
Markus Proft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5644615/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Capturing and Understanding the Dynamics and Heterogeneity of Gene Expression in the Living Cell. International Journal of Molecular Sciences, 2020, 21, 8278.	4.1	8
2	Live-cell assays reveal selectivity and sensitivity of the multidrug response in budding yeast. Journal of Biological Chemistry, 2019, 294, 12933-12946.	3.4	9
3	Dose dependent gene expression is dynamically modulated by the history, physiology and age of yeast cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 457-471.	1.9	10
4	Ask yeast how to burn your fats: lessons learned from the metabolic adaptation to salt stress. Current Genetics, 2018, 64, 63-69.	1.7	23
5	Regulation of the Stress-Activated Degradation of Mitochondrial Respiratory Complexes in Yeast. Frontiers in Microbiology, 2018, 9, 106.	3.5	7
6	Multilayered control of peroxisomal activity upon salt stress in <scp><i>S</i></scp> <i>accharomyces cerevisiae</i> . Molecular Microbiology, 2017, 104, 851-868.	2.5	20
7	Pro- and Antioxidant Functions of the Peroxisome-Mitochondria Connection and Its Impact on Aging and Disease. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-17.	4.0	51
8	Stress-Activated Degradation of Sphingolipids Regulates Mitochondrial Function and Cell Death in Yeast. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-14.	4.0	6
9	Different Toxicity Mechanisms for Citrinin and Ochratoxin A Revealed by Transcriptomic Analysis in Yeast. Toxins, 2016, 8, 273.	3.4	30
10	Coordinated Gene Regulation in the Initial Phase of Salt Stress Adaptation. Journal of Biological Chemistry, 2015, 290, 10163-10175.	3.4	20
11	PKA-chromatin association at stress responsive target genes from Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 1329-1339.	1.9	11
12	Different Mechanisms Confer Gradual Control and Memory at Nutrient- and Stress-Regulated Genes in Yeast. Molecular and Cellular Biology, 2015, 35, 3669-3683.	2.3	16
13	Toxicity Mechanisms of the Food Contaminant Citrinin: Application of a Quantitative Yeast Model. Nutrients, 2014, 6, 2077-2087.	4.1	20
14	Deciphering Dynamic Dose Responses of Natural Promoters and Single <i>cis</i> Elements upon Osmotic and Oxidative Stress in Yeast. Molecular and Cellular Biology, 2013, 33, 2228-2240.	2.3	26
15	Activator and Repressor Functions of the Mot3 Transcription Factor in the Osmostress Response of Saccharomyces cerevisiae. Eukaryotic Cell, 2013, 12, 636-647.	3.4	24
16	Differential Regulation of Mitochondrial Pyruvate Carrier Genes Modulates Respiratory Capacity and Stress Tolerance in Yeast. PLoS ONE, 2013, 8, e79405.	2.5	36
17	Quantification of Protein–DNA Interactions by In Vivo Chromatin Immunoprecipitation in Yeast. Methods in Molecular Biology, 2012, 809, 149-156.	0.9	4
18	The use of a realâ€ŧime luciferase assay to quantify gene expression dynamics in the living yeast cell. Yeast, 2012, 29, 219-231.	1.7	68

MARKUS PROFT

#	Article	IF	CITATIONS
19	Sir2 histone deacetylase prevents programmed cell death caused by sustained activation of the Hog1 stressâ€activated protein kinase. EMBO Reports, 2011, 12, 1062-1068.	4.5	45
20	Repression of ergosterol biosynthesis is essential for stress resistance and is mediated by the Hog1 MAP kinase and the Mot3 and Rox1 transcription factors. Molecular Microbiology, 2011, 79, 1008-1023.	2.5	101
21	Toward a Genomic View of the Gene Expression Program Regulated by Osmostress in Yeast. OMICS A Journal of Integrative Biology, 2010, 14, 619-627.	2.0	74
22	Adaptive Changes of the Yeast Mitochondrial Proteome in Response to Salt Stress. OMICS A Journal of Integrative Biology, 2010, 14, 541-552.	2.0	16
23	Mitochondrial Function Is an Inducible Determinant of Osmotic Stress Adaptation in Yeast. Journal of Biological Chemistry, 2009, 284, 30307-30317.	3.4	68
24	Control of Stress-Regulated Gene Expression and Longevity by the Sch9 Protein Kinase. Cell Cycle, 2007, 6, 2445-2447.	2.6	15
25	The Sch9 kinase is a chromatin-associated transcriptional activator of osmostress-responsive genes. EMBO Journal, 2007, 26, 3098-3108.	7.8	72
26	The Stress-Activated Hog1 Kinase Is a Selective Transcriptional Elongation Factor for Genes Responding to Osmotic Stress. Molecular Cell, 2006, 23, 241-250.	9.7	140
27	Genome-wide location analysis of the stress-activated MAP kinase Hog1 in yeast. Methods, 2006, 40, 272-278.	3.8	34
28	Genomewide Identification of Sko1 Target Promoters Reveals a Regulatory Network That Operates in Response to Osmotic Stress in Saccharomyces cerevisiae. Eukaryotic Cell, 2005, 4, 1343-1352.	3.4	68
29	MAP Kinase-Mediated Stress Relief that Precedes and Regulates the Timing of Transcriptional Induction. Cell, 2004, 118, 351-361.	28.9	180
30	Hog1 Kinase Converts the Sko1-Cyc8-Tup1 Repressor Complex into an Activator that Recruits SAGA and SWI/SNF in Response to Osmotic Stress. Molecular Cell, 2002, 9, 1307-1317.	9.7	311
31	The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Molecular Microbiology, 2001, 40, 1067-1083.	2.5	161
32	Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. EMBO Journal, 2001, 20, 1123-1133.	7.8	188
33	The Sko1p Repressor and Gcn4p Activator Antagonistically Modulate Stress-Regulated Transcription in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2001, 21, 16-25.	2.3	51
34	Multiple Levels of Control Regulate the Yeast cAMP-response Element-binding Protein Repressor Sko1p in Response to Stress. Journal of Biological Chemistry, 2001, 276, 37373-37378.	3.4	61
35	The Ssn6-Tup1 repressor complex of Saccharomyces cerevisiae is involved in the osmotic induction of HOG-dependent and -independent genes. EMBO Journal, 1998, 17, 2543-2553.	7.8	67
36	Yeast Clk-1 Homologue (Coq7/Cat5) Is a Mitochondrial Protein in Coenzyme Q Synthesis. Journal of Biological Chemistry, 1998, 273, 3351-3357.	3.4	120

Markus Proft

#	Article	IF	CITATIONS
37	Glucose Derepression of Gluconeogenic Enzymes in <i>Saccharomyces cerevisiae</i> Correlates with Phosphorylation of the Gene Activator Cat8p. Molecular and Cellular Biology, 1997, 17, 2502-2510.	2.3	133
38	Identification and characterization of regulatory elements in the phosphoenolpyruvate carboxykinase gene PCK1 of Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1995, 246, 367-373.	2.4	41
39	Sequence and functional analysis of a 7·2 kb DNA fragment containing four open reading frames located betweenRPB5 andCDC28 on the right arm of chromosome II. Yeast, 1995, 11, 865-871.	1.7	11
40	Regulation of the pleiotropic drug resistance transcription factors Pdr1 and Pdr3 in yeast. St Open, 0, 2, 1-17.	0.0	0