
Magda-Viola Hanke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5644567/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus�×domestica Borkh.). Plant Breeding, 2007, 126, 137-145.	1.0	150
2	Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta, 2010, 232, 1309-1324.	1.6	144
3	Application of a high-speed breeding technology to apple (Malusâ $\in f$ ×â $\in f$ domestica) based on transgenic early flowering plants and marker-assisted selection. New Phytologist, 2011, 192, 364-377.	3.5	141
4	A review on transgenic approaches to accelerate breeding of woody plants. Plant Breeding, 2009, 128, 217-226.	1.0	130
5	Strong evidence for a fire blight resistance gene of <i>Malus robusta</i> located on linkage group 3. Plant Breeding, 2007, 126, 470-475.	1.0	124
6	Maize Lc transcription factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.). Planta, 2007, 226, 1243-1254.	1.6	92
7	The MdTFL1 gene of apple (Malus x domestica Borkh.) reduces vegetative growth and generation time. Tree Physiology, 2012, 32, 1288-1301.	1.4	91
8	Geneâ€forâ€gene relationship in the host–pathogen system <i><scp>M</scp>alusÂ</i> ×Â <i>robusta</i> 5– <i><scp>E</scp>rwinia amylovora</i> . New Phytologist, 2013, 197, 1262-1275.	3.5	88
9	Engineering fire blight resistance into the apple cultivar †Gala' using the <i><scp>FB</scp>_<scp>MR</scp>5 </i> <scp>CC</scp> â€ <scp>NBS</scp> â€ <scp>LRR</scp> resistance gene of <i>Malus</i> AA—A <i>robusta</i> 5. Plant Biotechnology Journal, 2014, 12, 728-733.	4.1	70
10	Shift in polyphenol profile and sublethal phenotype caused by silencing of anthocyanidin synthase in apple (Malus sp.). Planta, 2009, 229, 681-692.	1.6	61
11	Isolation of flowering genes and seasonal changes in their transcript levels related to flower induction and initiation in apple (Malus domestica). Tree Physiology, 2008, 28, 1459-1466.	1.4	60
12	Formation of biphenyl and dibenzofuran phytoalexins in the transition zones of fire blight-infected stems of Malus domestica cv. †Holsteiner Cox' and Pyrus communis cv. †Conference'. Phytochemistry 2012, 77, 179-185.	y,1.4	57
13	Premature and ectopic anthocyanin formation by silencing of anthocyanidin reductase in strawberry (<i>Fragaria</i> Â×Â <i>ananassa</i>). New Phytologist, 2014, 201, 440-451.	3.5	57
14	The Fast-track breeding approach can be improved by heat-induced expression of the FLOWERING LOCUS T genes from poplar (Populus trichocarpa) in apple (Malus × domestica Borkh.). Plant Cell, Tissue and Organ Culture, 2013, 115, 127-137.	1.2	52
15	<i><scp>TERMINAL FLOWER</scp>1</i> is a breeding target for a novel everbearing trait and tailored flowering responses in cultivated strawberry (<i>FragariaA</i> Å—Â <i>ananassa</i> Duch.). Plant Biotechnology Journal, 2016, 14, 1852-1861.	4.1	52
16	Overexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes. Planta, 2010, 231, 251-263.	1.6	50
17	Identification of a major quantitative trait locus for resistance to fire blight in the wild apple species Malus fusca. Molecular Breeding, 2014, 34, 407-419.	1.0	50
18	Transgenic apple plants overexpressing the Lc gene of maize show an altered growth habit and increased resistance to apple scab and fire blight. Planta, 2010, 231, 623-635.	1.6	46

Magda-Viola Hanke

#	Article	IF	CITATIONS
19	Improving resistance of different apple cultivars using the Rvi6 scab resistance gene in a cisgenic approach based on the Flp/FRT recombinase system. Molecular Breeding, 2015, 35, 1.	1.0	44
20	Differential Expression of Biphenyl Synthase Gene Family Members in Fire-Blight-Infected Apple †Holsteiner Cox'. Plant Physiology, 2012, 158, 864-875.	2.3	42
21	An Efficient Method for Rooting and Acclimation of Micropropagated Apple Cultivars. Hortscience: A Publication of the American Society for Hortcultural Science, 1998, 33, 1251-1252.	0.5	42
22	Erwinia amylovora-induced defense mechanisms of two apple species that differ in susceptibility to fire blight. Plant Science, 2010, 179, 60-67.	1.7	41
23	Spatial and Temporal Localization of Flavonoid Metabolites in Strawberry Fruit (<i>Fragaria</i> ×) Tj ETQq1 1	0.784314 2.4	rgBT /Overlo
24	Use of a transgenic early flowering approach in apple (MalusÂ×Âdomestica Borkh.) to introgress fire blight resistance from cultivar Evereste. Molecular Breeding, 2012, 30, 857-874.	1.0	39
25	Generation of advanced fire blight-resistant apple (Malus × domestica) selections of the fifth generation within 7Âyears of applying the early flowering approach. Planta, 2018, 247, 1475-1488.	1.6	38
26	Evaluation of Malus genetic resources for tolerance to apple replant disease (ARD). Scientia Horticulturae, 2019, 256, 108517.	1.7	38
27	The MADS-Box Gene MdDAM1 Controls Growth Cessation and Bud Dormancy in Apple. Frontiers in Plant Science, 2020, 11, 1003.	1.7	38
28	Efficient heat-shock removal of the selectable marker gene in genetically modified grapevine. Plant Cell, Tissue and Organ Culture, 2016, 124, 471-481.	1.2	37
29	CONFIRMATION OF THE FIRE BLIGHT QTL OF MALUS × ROBUSTA 5 ON LINKAGE GROUP 3. Acta Horticulturae, 2008, , 297-303.	0.1	36
30	Transgenic apple plants overexpressing the chalcone 3-hydroxylase gene of Cosmos sulphureus show increased levels of 3-hydroxyphloridzin and reduced susceptibility to apple scab and fire blight. Planta, 2016, 243, 1213-1224.	1.6	35
31	Heat-shock-mediated elimination of the nptII marker gene in transgenic apple (Malus×domestica) Tj ETQq1 1	0.784314 1.0	rgBT /Overlo
32	Silencing of flavanone-3-hydroxylase in apple (MalusÂ×Âdomestica Borkh.) leads to accumulation of flavanones, but not to reduced fire blight susceptibility. Plant Physiology and Biochemistry, 2012, 51, 18-25.	2.8	32
33	Fire blight resistance of Malus ×arnoldiana is controlled by a quantitative trait locus located at the distal end of linkage group 12. European Journal of Plant Pathology, 2017, 148, 1011-1018.	0.8	32
34	INOCULATION OF MALUS × ROBUSTA 5 PROGENY WITH A STRAIN BREAKING RESISTANCE TO FIRE BLIGHT REVEALS A MINOR QTL ON LG5. Acta Horticulturae, 2011, , 357-362.	0.1	31
35	QTL mapping of fire blight resistance in Malus ×robusta 5 after inoculation with different strains of Erwinia amylovora. Molecular Breeding, 2014, 34, 217-230.	1.0	31
36	Evaluation of the uniformity and stability of T-DNA integration and gene expression in transgenic apple plants. Electronic Journal of Biotechnology, 2008, 11, 0-0.	1.2	28

#	Article	IF	CITATIONS
37	RNA-Mediated Gene Silencing Signals Are Not Graft Transmissible from the Rootstock to the Scion in Greenhouse-Grown Apple Plants Malus sp International Journal of Molecular Sciences, 2012, 13, 9992-10009.	1.8	28
38	Towards map-based cloning of FB_Mfu10: identification of a receptor-like kinase candidate gene underlying the Malus fusca fire blight resistance locus on linkage group 10. Molecular Breeding, 2018, 38, 106.	1.0	28
39	Phytoalexin formation in fire blight-infected apple. Trees - Structure and Function, 2013, 27, 477-484.	0.9	27
40	Genes Involved in Stress Response and Especially in Phytoalexin Biosynthesis Are Upregulated in Four Malus Genotypes in Response to Apple Replant Disease. Frontiers in Plant Science, 2019, 10, 1724.	1.7	27
41	To what extent do wild apples in Kazakhstan retain their genetic integrity?. Tree Genetics and Genomes, 2017, 13, 1.	0.6	26
42	Mapping of fire blight resistance in Malus ×robusta 5 flowers following artificial inoculation. BMC Plant Biology, 2019, 19, 532.	1.6	24
43	Transgenic expression of a viral EPSâ€depolymerase is potentially useful to induce fire blight resistance in apple. Annals of Applied Biology, 2008, 153, 345-355.	1.3	23
44	Substrate specificity and contribution of the glycosyltransferase UGT71A15 to phloridzin biosynthesis. Trees - Structure and Function, 2012, 26, 259-271.	0.9	23
45	Assessment of phenotypic variation of Malus orientalis in the North Caucasus region. Genetic Resources and Crop Evolution, 2013, 60, 1463-1477.	0.8	23
46	Evaluation of strawberry (<i><scp>F</scp>ragaria</i> L.) genetic resources for resistance to <i><scp>B</scp>otrytis cinerea</i> . Plant Pathology, 2015, 64, 396-405.	1.2	23
47	Inoculation of <i>Malus</i> genotypes with a set of <i>Erwinia amylovora</i> strains indicates a geneâ€forâ€gene relationship between the effector gene <i>eop1</i> and both <i>Malus floribunda</i> 821 and <i>Malus</i> †Evereste'. Plant Pathology, 2018, 67, 938-947.	1.2	22
48	Cryopreservation of fruit germplasm. In Vitro Cellular and Developmental Biology - Plant, 2017, 53, 372-381.	0.9	21
49	Resistance and systemic dispersal of <i>Xanthomonas fragariae</i> in strawberry germplasm (<i>Fragaria</i> L.). Plant Pathology, 2015, 64, 71-80.	1.2	20
50	Integration of <i>Bp<scp>MADS</scp>4</i> on various linkage groups improves the utilization of the rapid cycle breeding system in apple. Plant Biotechnology Journal, 2015, 13, 246-258.	4.1	20
51	Molecular and flow cytometric evaluation of pear (Pyrus L.) genetic resources of the German and Romanian national fruit collections. Genetic Resources and Crop Evolution, 2016, 63, 1023-1033.	0.8	19
52	A Single Effector Protein, AvrRpt2 _{EA} , from <i>Erwinia amylovora</i> Can Cause Fire Blight Disease Symptoms and Induces a Salicylic Acid–Dependent Defense Response. Molecular Plant-Microbe Interactions, 2018, 31, 1179-1191.	1.4	19
53	SSR fingerprinting of a German Rubus collection and pedigree based evaluation on trueness-to-type. Genetic Resources and Crop Evolution, 2017, 64, 189-203.	0.8	18
54	Physiological, biochemical and genetic responses of Caucasian tea (<i>Camellia sinensis</i> (L.) Kuntze) genotypes under cold and frost stress. PeerJ, 2020, 8, e9787.	0.9	18

#	Article	IF	CITATIONS
55	A comparison of genetic stability in tea [Camellia sinensis (L.) Kuntze] plantlets derived from callus with plantlets from long-term in vitro propagation. Plant Cell, Tissue and Organ Culture, 2019, 138, 467-474.	1.2	17
56	The fire blight resistance QTL of Malus fusca (Mfu10) is affected but not broken down by the highly virulent Canadian Erwinia amylovora strain E2002A. European Journal of Plant Pathology, 2015, 141, 631-635.	0.8	16
57	Introgressing blue mold resistance into elite apple germplasm by rapid cycle breeding and foreground and background DNA-informed selection. Tree Genetics and Genomes, 2020, 16, 1.	0.6	16
58	Phenotypic and genetic analysis of the German Malus Germplasm Collection in terms of type 1 and type 2 red-fleshed apples. Gene, 2014, 544, 198-207.	1.0	15
59	Assessing gene flow in apple using a descendant ofMalus sieversiivar.sieversiif.niedzwetzkyanaas an identifier for pollen dispersal. Environmental Biosafety Research, 2006, 5, 89-104.	1.1	14
60	Molecular analysis of Iranian seedless barberries via SSR. Scientia Horticulturae, 2011, 129, 702-709.	1.7	14
61	The role of Schmidt â€~Antonovka' in apple scab resistance breeding. Tree Genetics and Genomes, 2012, 8, 627-642.	0.6	14
62	A diallel crossing approach aimed on selection for ripening time and yield in breeding of new strawberry (Fragaria×ananassaDuch.) cultivars. Plant Breeding, 2014, 133, 115-120.	1.0	14
63	EVIDENCE OF A MAJOR QTL FOR FIRE BLIGHT RESISTANCE IN THE APPLE WILD SPECIES MALUS FUSCA. Acta Horticulturae, 2014, , 289-293.	0.1	14
64	Studies on heat shock induction and transgene expression in order to optimize the Flp/FRT recombinase system in apple (MalusÂ×Âdomestica Borkh.). Plant Cell, Tissue and Organ Culture, 2013, 115, 457-467.	1.2	13
65	High crop load and low temperature delay the onset of bud initiation in apple. Scientific Reports, 2019, 9, 17986.	1.6	13
66	Toward Systematic Understanding of Flower Bud Induction in Apple: A Multi-Omics Approach. Frontiers in Plant Science, 2021, 12, 604810.	1.7	12
67	Heat mediated silencing of MdTFL1 genes in apple (MalusÂ×Âdomestica). Plant Cell, Tissue and Organ Culture, 2015, 123, 511-521.	1.2	10
68	RNAI-SILENCING OF MdTFL1 INDUCES EARLY FLOWERING IN APPLE. Acta Horticulturae, 2009, , 633-636.	0.1	9
69	Chitinase activities, scab resistance, mycorrhization rates and biomass of own-rooted and grafted transgenic apple. Genetics and Molecular Biology, 2012, 35, 466-473.	0.6	9
70	Fruit Crops. Biotechnology in Agriculture and Forestry, 2010, , 307-348.	0.2	8
71	Note added in proof to: Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta, 2011, 233, 217-218.	1.6	8
72	Apple cultivar Regia possessing both Rvi2 and Rvi4 resistance genes is the source of a new race of Venturia inaequalis. European Journal of Plant Pathology, 2018, 151, 533-539.	0.8	8

#	Article	IF	CITATIONS
73	SSR fingerprinting of raspberry cultivars traded in Germany clearly showed that certainty about the genotype authenticity is a prerequisite for any horticultural experiment. European Journal of Horticultural Science, 2020, 85, 79-85.	0.3	8
74	Evaluation of Malus gene bank resources with German strains of Marssonina coronaria using a greenhouse-based screening method. European Journal of Plant Pathology, 2019, 153, 743-757.	0.8	7
75	Insights into the susceptibility of raspberries to Drosophila suzukii oviposition. Journal of Applied Entomology, 2021, 145, 182-190.	0.8	7
76	COMPARATIVE MAPPING OF FIRE BLIGHT RESISTANCE IN MALUS. Acta Horticulturae, 2014, , 47-51.	0.1	6
77	VERIFYING THE PARENTS OF THE PILLNITZER APPLE CULTIVARS. Acta Horticulturae, 2009, , 319-324.	0.1	6
78	THE SWITCH TO FLOWERING: GENES INVOLVED IN FLORAL INDUCTION OF THE APPLE CULTIVAR 'PINOVA' AND THE ROLE OF THE FLOWERING GENE MdFT. Acta Horticulturae, 2009, , 701-705.	0.1	5
79	Functional Genomics of Flowering Time in Trees. , 2012, , 39-69.		5
80	Homologs of the FB_MR5 fire blight resistance gene of Malus ×robusta 5 are present in other Malus wild species accessions. Tree Genetics and Genomes, 2016, 12, 1.	0.6	5
81	IMPROVED FIRE BLIGHT RESISTANCE IN TRANSGENIC APPLE LINES BY CONSTITUTIVE OVEREXPRESSION OF THE mbr4 GENE OF MALUS BACCATA. Acta Horticulturae, 2008, , 287-291.	0.1	5
82	BREEDING OF RESISTANT STRAWBERRY CULTIVARS FOR ORGANIC FRUIT PRODUCTION - PRELIMINARY RESULTS WITH BOTRYTIS CINEREA. Acta Horticulturae, 2013, , 87-90.	0.1	4
83	Evaluation of a MdMYB10/GFP43 fusion gene for its suitability to act as reporter gene in promoter studies in Fragaria vesca L. â€`RÃ1⁄4gen'. Plant Cell, Tissue and Organ Culture, 2017, 130, 345-356.	1.2	4
84	Evaluation of Rubus genetic resources on their resistance to cane disease. Genetic Resources and Crop Evolution, 2018, 65, 1979-1993.	0.8	4
85	Transcriptional profile of AvrRpt2EA-mediated resistance and susceptibility response to Erwinia amylovora in apple. Scientific Reports, 2021, 11, 8685.	1.6	4
86	ANALYSIS OF TISSUE UNIFORMITY IN TRANSGENIC APPLE PLANTS. Acta Horticulturae, 2007, , 301-306.	0.1	4
87	PRELIMINARY RESULTS TO ESTABLISH THE DAAO SYSTEM AS AN ALTERNATIVE SELECTION STRATEGY ON APPLE. Acta Horticulturae, 2009, , 267-272.	0.1	4
88	FRUIT GENETIC RESOURCES MANAGEMENT: COLLECTION, CONSERVATION, EVALUATION AND UTILIZATION IN GERMANY. Acta Horticulturae, 2014, , 231-234.	0.1	4
89	FIRST RESULTS ON THE EFFECT OF INCREASED CHITINASE EXPRESSION IN TRANSGENIC APPLE TREES ON MYCORRHIZATION WITH GLOMUS INTRARADICES AND G. MOSSEAE. Acta Horticulturae, 2009, , 719-724.	0.1	3
90	METABOLIC ENGINEERING OF FLAVONOID BIOSYNTHESIS IN APPLE (MALUS DOMESTICA BORKH.). Acta Horticulturae, 2009, , 511-516.	0.1	3

Magda-Viola Hanke

#	Article	IF	CITATIONS
91	DEVELOPING MOLECULAR MARKERS FOR MARKER ASSISTED SELECTION OF FIRE BLIGHT RESISTANT APPLE SEEDLINGS. Acta Horticulturae, 2007, , 117-122.	0.1	3
92	IDENTIFICATION OF CULTIVABLE BACTERIA FROM IN VITRO CULTURES OF APPLE. Acta Horticulturae, 2009, , 733-738.	0.1	3
93	RATIO OF HOMOZYGOUS AND HETEROZYGOUS VF GENOTYPES IN THE PROGENIES OF APPLE VFVF X VFVF CROSSES. Acta Horticulturae, 2009, , 819-824.	0.1	3
94	No Evidence of Unexpected Transgenic Insertions in T1190 – A Transgenic Apple Used in Rapid Cycle Breeding – Following Whole Genome Sequencing. Frontiers in Plant Science, 2021, 12, 715737.	1.7	2
95	Self-incompatibility of raspberry cultivars assessed by SSR markers. Scientia Horticulturae, 2021, 288, 110384.	1.7	2
96	Transgenic Fruit Crops in Europe. , 2011, , 125-145.		2
97	BPMADS4 - A MADS BOX GENE OF BIRCH INDUCES FLOWERS ON TRANSGENIC APPLE PLANTS IN VITRO. Acta Horticulturae, 2007, , 307-312.	0.1	2
98	CISGENIC APPROACH FOR IMPROVED DISEASE RESISTANCE IN APPLE. Acta Horticulturae, 2013, , 117-121.	0.1	2
99	BIOTECHNOLOGICAL APPROACHES TO SHORTEN THE JUVENILE PERIOD IN FRUIT TREES. Acta Horticulturae, 2012, , 309-314.	0.1	1
100	DEVELOPMENT OF APPLE PRE-BREEDING GENOTYPES HIGHLY RESISTANT TO FIRE BLIGHT BY EARLY FLOWERING. Acta Horticulturae, 2014, , 55-64.	0.1	1
101	INVESTIGATION ON FIRE BLIGHT RESISTANCE IN THE CROSS POPULATION 'IDARED' × MALUS ×ROBUSTA 5 WITH DIFFERENT ERWINIA AMYLOVORA STRAINS. Acta Horticulturae, 2014, , 277-280.	0.1	1
102	FB-MR5 IS AN APPLE GENE PROVIDING RESISTANCE TO FIRE BLIGHT. Acta Horticulturae, 2014, , 273-276.	0.1	1
103	Himbeere und Brombeere (Rubus spp.). , 2017, , 353-384.		1
104	TRANSCRIPTION PROFILING ON TRANSGENIC APPLE PLANTS AFTER OVER-EXPRESSION OF GENES, WHICH ARE INVOLVED IN THE FLOWER DEVELOPMENT. Acta Horticulturae, 2007, , 215-222.	0.1	1
105	SYSTEMIC ACQUIRED SILENCING OF A GUSA TRANSGENE IN APPLE. Acta Horticulturae, 2009, , 393-396.	0.1	1
106	PRELIMINARY RESULTS TO ESTABLISH A SPEED-BREED PROGRAM BASED ON HEAT-INDUCED PRECOCIOUS FLOWERING OF APPLE PLANTS CONTAINING THE FLOWERING LOCUS T GENE FROM POPLAR (POPULUS) TJ ETQ	q00010 rg	BT Dverlock 1
107	STUDIES ON MRNA EXPRESSION OF GENES INVOLVED IN FLORAL MERISTEM TRANSITION OF APPLE (MALUS) Tj	ЕТ <u>О</u> 11	0.784314 rgE
108	BIPHENYL AND DIBENZOFURAN FORMATION IN FIRE BLIGHT-INFECTED MALUS DOMESTICA CULTIVARS. Acta Horticulturae, 2011, , 547-553.	0.1	0

#	Article	IF	CITATIONS
109	GENETIC CONTROL OF FLOWER DEVELOPMENT IN APPLE AND THE UTILISATION OF TRANSGENIC EARLY FLOWERING APPLE PLANTS IN BREEDING. Acta Horticulturae, 2012, , 29-34.	0.1	0
110	BIPHENYLS AND DIBENZOFURANS - FIRE BLIGHT-INDUCED PHYTOALEXINS OF PEAR. Acta Horticulturae, 2014, , 181-185.	0.1	0
111	QTL MAPPING FOR RESISTANCE TO FIRE BLIGHT USING SEVERAL ERWINIA AMYLOVORA STRAINS RESULTING IN DIFFERENT HOST-PATHOGEN INTERACTIONS. Acta Horticulturae, 2013, , 509-512.	0.1	Ο
112	THE "GERMAN NATIONAL FRUIT GENEBANK", A FIRST REVIEW FIVE YEARS AFTER LAUNCHING. Acta Horticulturae, 2014, , 227-230.	0.1	0
113	Klimawandel – Ausrichtung der Züchtung bei Obst. , 0, , .		0