
Vishwanath Hiremath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5644564/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly reversible CO2 capture using amino acid functionalized ionic liquids immobilized on mesoporous silica. Chemical Engineering Journal, 2016, 287, 602-617.	12.7	89
2	Fineâ€Tuning of the Carbon Dioxide Capture Capability of Diamineâ€Grafted Metal–Organic Framework Adsorbents Through Amine Functionalization. ChemSusChem, 2017, 10, 541-550.	6.8	88
3	Elevated temperature CO2 capture on nano-structured MgO–Al2O3 aerogel: Effect of Mg/Al molar ratio. Chemical Engineering Journal, 2014, 242, 357-363.	12.7	87
4	Controlled oxidation state of Ti in MgO-TiO 2 composite for CO 2 capture. Chemical Engineering Journal, 2017, 308, 177-183.	12.7	49
5	Diamineâ€Functionalization of a Metal–Organic Framework Adsorbent for Superb Carbon Dioxide Adsorption and Desorption Properties. ChemSusChem, 2018, 11, 1694-1707.	6.8	40
6	Mesoporous magnesium oxide nanoparticles derived via complexation-combustion for enhanced performance in carbon dioxide capture. Journal of Colloid and Interface Science, 2017, 498, 55-63.	9.4	33
7	Self-assembled Mn ₃ O ₄ nano-clusters over carbon nanotube threads with enhanced supercapacitor performance. New Journal of Chemistry, 2018, 42, 19608-19614.	2.8	29
8	Eutectic mixture promoted CO2 sorption on MgO-TiO2 composite at elevated temperature. Journal of Environmental Sciences, 2019, 76, 80-88.	6.1	19
9	Hierarchically assembled porous TiO2 nanoparticles with enhanced photocatalytic activity towards Rhodamine-B degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124199.	4.7	16
10	Encapsulation of Phase-Changing Eutectic Salts in Magnesium Oxide Fibers for High-Temperature Carbon Dioxide Capture: Beyond the Capacity–Stability Tradeoff. ACS Applied Materials & Interfaces, 2020, 12, 518-526.	8.0	13
11	Highly porous honeycombâ€like activated carbon derived using cellulose pulp for symmetric supercapacitors. International Journal of Energy Research, 2021, 45, 4385-4395.	4.5	13
12	MgO insertion endowed strong basicity in mesoporous alumina framework and improved CO2 sorption capacity. Journal of CO2 Utilization, 2020, 42, 101294.	6.8	12
13	Mgâ€ion Inversion in MgO@MgOâ^Al ₂ O ₃ Oxides: The Origin of Basic Sites. ChemSusChem, 2019, 12, 2810-2818.	6.8	11
14	Synthesis and Characterization of AlCl ₃ Impregnated Molybdenum Oxide as Heterogeneous Nano-Catalyst for the Friedel-Crafts Acylation Reaction in Ambient Condition. Journal of Nanoscience and Nanotechnology, 2015, 15, 8243-8250.	0.9	10
15	Sacrificial templating method for fabrication of MgO-Al2O3@C spheres and their application to CO2 capture. Materials Letters, 2018, 211, 304-307.	2.6	7
16	Stabilization of NaNO ₃ -Promoted Magnesium Oxide for High-Temperature CO ₂ Capture. Environmental Science & Technology, 2018, 52, 11952-11959.	10.0	7
17	Preparation and Characterization of Electro-Spun Fabricated Ag–TiO ₂ Composite Nanofibers and Its Enhanced Photo-Catalytic Activity for the Degradation of Congo Red. Journal of Nanoscience and Nanotechnology, 2015, 15, 7988-7996.	0.9	5
18	Synergistic activating effect of promoter and oxidant in single step conversion of methane into methanel over a tailored polymer-Ag coordination complex. RSC Advances, 2017, 7, 24168-24176.	3.6	4

#	Article	IF	CITATIONS
19	Induced application of biological waste Escherichia coli functionalized with an amine-based polymer for CO ₂ capture. RSC Advances, 2016, 6, 77535-77544.	3.6	2
20	Promoting Discarded Packing Waste into Value-Added 2D Porous Carbon Flakes for Multifunctional Applications. ACS Sustainable Chemistry and Engineering, 2019, , .	6.7	0