Zijie Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5644157/publications.pdf

Version: 2024-02-01

		361413	315739
39	1,882	20	38
papers	citations	h-index	g-index
39	39	39	2796
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Linking β-Catenin to Androgen-signaling Pathway. Journal of Biological Chemistry, 2002, 277, 11336-11344.	3.4	308
2	Phosphatidylinositol 3-Kinase/Akt Stimulates Androgen Pathway through GSK3 \hat{I}^2 Inhibition and Nuclear \hat{I}^2 -Catenin Accumulation. Journal of Biological Chemistry, 2002, 277, 30935-30941.	3.4	263
3	The Androgen Receptor Negatively Regulates the Expression of c-Met: Implications for a Novel Mechanism of Prostate Cancer Progression. Cancer Research, 2007, 67, 967-975.	0.9	170
4	Roles and regulation of Wnt signaling and β-catenin in prostate cancer. Cancer Letters, 2006, 237, 22-32.	7.2	166
5	AP-1 mediates stretch-induced expression of HB-EGF in bladder smooth muscle cells. American Journal of Physiology - Cell Physiology, 1999, 277, C294-C301.	4.6	87
6	Crosstalking between Androgen and PI3K/AKT Signaling Pathways in Prostate Cancer Cells. Journal of Biological Chemistry, 2015, 290, 2759-2768.	3.4	72
7	Tumor susceptibility gene 101 protein represses androgen receptor transactivation and interacts with p300., 1999, 86, 689-696.		71
8	The novel PIAS-like protein hZimp10 is a transcriptional co-activator of the p53 tumor suppressor. Nucleic Acids Research, 2007, 35, 4523-4534.	14.5	63
9	\hat{l}^2 -Catenin Is Involved in Insulin-Like Growth Factor 1-Mediated Transactivation of the Androgen Receptor. Molecular Endocrinology, 2005, 19, 391-398.	3.7	61
10	LZTS2 Is a Novel \hat{l}^2 -Catenin-Interacting Protein and Regulates the Nuclear Export of \hat{l}^2 -Catenin. Molecular and Cellular Biology, 2006, 26, 8857-8867.	2.3	61
11	Human Regulatory Factor X 4 (RFX4) Is a Testis-specific Dimeric DNA-binding Protein That Cooperates with Other Human RFX Members. Journal of Biological Chemistry, 2002, 277, 836-842.	3.4	45
12	Efficacy of c-Met inhibitor for advanced prostate cancer. BMC Cancer, 2010, 10, 556.	2.6	44
13	Conditional Expression of the Androgen Receptor Induces Oncogenic Transformation of the Mouse Prostate. Journal of Biological Chemistry, 2011, 286, 33478-33488.	3.4	40
14	Melatonin protects spermatogonia from the stress of chemotherapy and oxidation via eliminating reactive oxidative species. Free Radical Biology and Medicine, 2019, 137, 74-86.	2.9	36
15	The PIAS-Like Protein Zimp10 Is Essential for Embryonic Viability and Proper Vascular Development. Molecular and Cellular Biology, 2008, 28, 282-292.	2.3	35
16	ZMIZ1 Variants Cause a Syndromic Neurodevelopmental Disorder. American Journal of Human Genetics, 2019, 104, 319-330.	6.2	30
17	Conditional Expression of the Androgen Receptor Increases Susceptibility of Bladder Cancer in Mice. PLoS ONE, 2016, 11, e0148851.	2.5	28
18	Wnt/β-Catenin-Responsive Cells in Prostatic Development and Regeneration. Stem Cells, 2015, 33, 3356-3367.	3.2	26

#	Article	IF	Citations
19	ZMIZ1 Preferably Enhances the Transcriptional Activity of Androgen Receptor with Short Polyglutamine Tract. PLoS ONE, 2011, 6, e25040.	2.5	25
20	Conditional Deletion of the Pten Gene in the Mouse Prostate Induces Prostatic Intraepithelial Neoplasms at Early Ages but a Slow Progression to Prostate Tumors. PLoS ONE, 2013, 8, e53476.	2.5	22
21	The comprehensive role of E-cadherin in maintaining prostatic epithelial integrity during oncogenic transformation and tumor progression. PLoS Genetics, 2019, 15, e1008451.	3.5	22
22	Identification of a Novel Role of ZMIZ2 Protein in Regulating the Activity of the Wnt/ \hat{l}^2 -Catenin Signaling Pathway. Journal of Biological Chemistry, 2013, 288, 35913-35924.	3.4	20
23	Deletion of Leucine Zipper Tumor Suppressor 2 (Lzts2) Increases Susceptibility to Tumor Development. Journal of Biological Chemistry, 2013, 288, 3727-3738.	3.4	20
24	Loss of androgen signaling in mesenchymal sonic hedgehog responsive cells diminishes prostate development, growth, and regeneration. PLoS Genetics, 2020, 16, e1008588.	3.5	19
25	YXQN Reduces Alzheimer's Disease-Like Pathology and Cognitive Decline in APPswePS1dE9 Transgenic Mice. Frontiers in Aging Neuroscience, 2017, 9, 157.	3.4	18
26	Androgen signaling is essential for development of prostate cancer initiated from prostatic basal cells. Oncogene, 2019, 38, 2337-2350.	5.9	16
27	The Leucine Zipper Putative Tumor Suppressor 2 Protein LZTS2 Regulates Kidney Development. Journal of Biological Chemistry, 2011, 286, 40331-40342.	3.4	15
28	An Hsp27-related, Dominant-negative-acting Intracellular Estradiol-binding Protein. Journal of Biological Chemistry, 2004, 279, 29944-29951.	3.4	13
29	Activation of hepatocyte growth factor/MET signaling initiates oncogenic transformation and enhances tumor aggressiveness in the murine prostate. Journal of Biological Chemistry, 2018, 293, 20123-20136.	3.4	12
30	An Indispensable Role of Androgen Receptor in Wnt Responsive Cells During Prostate Development, Maturation, and Regeneration. Stem Cells, 2018, 36, 891-902.	3.2	11
31	LZTS2 and PTEN collaboratively regulate ß-catenin in prostatic tumorigenesis. PLoS ONE, 2017, 12, e0174357.	2.5	10
32	Dual Blockade of c-MET and the Androgen Receptor in Metastatic Castration-resistant Prostate Cancer: A Phase I Study of Concurrent Enzalutamide and Crizotinib. Clinical Cancer Research, 2020, 26, 6122-6131.	7.0	9
33	Androgen receptor with short polyglutamine tract preferably enhances Wnt/ \hat{l}^2 -catenin-mediated prostatic tumorigenesis. Oncogene, 2020, 39, 3276-3291.	5.9	9
34	Stromal androgen and hedgehog signaling regulates stem cell niches in pubertal prostate development. Development (Cambridge), 2021, 148, .	2.5	8
35	Loss of the tumor suppressor, Tp53, enhances the androgen receptor-mediated oncogenic transformation and tumor development in the mouse prostate. Oncogene, 2019, 38, 6507-6520.	5.9	7
36	Aberrant activation of hepatocyte growth factor/MET signaling promotes β-catenin–mediated prostatic tumorigenesis. Journal of Biological Chemistry, 2020, 295, 631-644.	3.4	6

ZIJIE SUN

#	Article	IF	CITATIONS
37	Androgen action in cell fate and communication during prostate development at single-cell resolution. Development (Cambridge), 2021, 148, .	2.5	6
38	A pivotal role of androgen signaling in Notch-responsive cells in prostate development, maturation, and regeneration. Differentiation, 2019, 107, 1-10.	1.9	5
39	Deletion of the p16INK4a tumor suppressor and expression of the androgen receptor induce sarcomatoid carcinomas with signet ring cells in the mouse prostate. PLoS ONE, 2019, 14, e0211153.	2.5	3