Jianping Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5644138/publications.pdf

Version: 2024-02-01

516215 642321 23 970 16 23 g-index citations h-index papers 23 23 23 831 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microencapsulation of oil soluble polyaspartic acid ester and isophorone diisocyanate and their application in selfâ€healing anticorrosive epoxy resin. Journal of Applied Polymer Science, 2020, 137, 48478.	1.3	14
2	Reversible Photochromic Nanofiber Membrane Containing Combâ€Like Poly(octadecyl acrylate) Nanoparticles Used for Ultraviolet Intensity Indicator. Macromolecular Materials and Engineering, 2019, 304, 1900299.	1.7	9
3	Facile flexible reversible thermochromic membranes based on micro/nanoencapsulated phase change materials for wearable temperature sensor. Applied Energy, 2019, 247, 615-629.	5.1	95
4	Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing. Applied Energy, 2018, 217, 281-294.	5.1	192
5	Fabrication and characterization of core–shell novel PU microcapsule using TDI trimer for release system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 550, 138-144.	2.3	22
6	Preparation and Properties of Narrowly Dispersed Polyurethane Nanocapsules Containing Essential Oil via Phase Inversion Emulsification. Journal of Agricultural and Food Chemistry, 2018, 66, 10799-10807.	2.4	17
7	Design and fabrication of reversible thermochromic microencapsulated phase change materials for thermal energy storage and its antibacterial activity. Energy, 2018, 159, 857-869.	4.5	68
8	Chitosan composite microencapsulated comb-like polymeric phase change material via coacervation microencapsulation. Carbohydrate Polymers, 2018, 200, 602-610.	5.1	64
9	Microencapsulated Comb-Like Polymeric Solid-Solid Phase Change Materials via In-Situ Polymerization. Polymers, 2018, 10, 172.	2.0	11
10	Novel Dual-Component Microencapsulated Hydrophobic Amine and Microencapsulated Isocyanate Used for Self-Healing Anti-Corrosion Coating. Polymers, 2018, 10, 319.	2.0	38
11	Fabrication and Performance of Composite Microencapsulated Phase Change Materials with Palmitic Acid Ethyl Ester as Core. Polymers, 2018, 10, 726.	2.0	10
12	Microstructure regulation of microencapsulated bio-based $\langle i \rangle n \langle j \rangle$ -dodecanol as phase change materials $\langle i \rangle v$ ia in situ $\langle j \rangle$ polymerization. New Journal of Chemistry, 2017, 41, 14696-14707.	1.4	27
13	Effects of Polyvinyl Alcohol Modification on Microstructure, Thermal Properties and Impermeability of Microencapsulated <i>n</i>) -Dodecanol as Phase Change Material. ChemistrySelect, 2017, 2, 9369-9376.	0.7	8
14	Effects of oil-soluble etherified melamine-formaldehyde prepolymers on in situ microencapsulation and macroencapsulation of n-dodecanol. New Journal of Chemistry, 2017, 41, 9424-9437.	1.4	32
15	Effect of N-isopropylacrylamide on the preparation and properties of microencapsulated phase change materials. Energy, 2016, 106, 221-230.	4.5	24
16	Design, controlled fabrication and characterization of narrow-disperse macrocapsules containing Micro/NanoPCMs. Materials and Design, 2016, 99, 225-234.	3.3	22
17	Synthesis and characterization of thermal energy storage microencapsulated n-dodecanol with acrylic polymer shell. Energy, 2015, 87, 86-94.	4.5	48
18	A Novel Method for the Preparation of Narrow-Disperse Nanoencapsulated Phase Change Materials by Phase Inversion Emulsification and Suspension Polymerization. Industrial & Dispersion Chemistry Research, 2015, 54, 9307-9313.	1.8	23

#	Article	IF	CITATIONS
19	Fabrication, Characterization and Suppression of Supercooling in Microencapsulated <i>n</i> -Octadecane with Methyl Methacrylate-Octadecyl Methacrylate Copolymer as Shell. Science of Advanced Materials, 2014, 6, 120-127.	0.1	7
20	Fabrication, characterization, and supercooling suppression of nanoencapsulated n-octadecane with methyl methacrylate–octadecyl methacrylate copolymer shell. Colloid and Polymer Science, 2013, 291, 1705-1712.	1.0	28
21	Microencapsulated n-Octadecane with styrene-divinybenzene co-polymer shells. Journal of Polymer Research, 2011, 18, 49-58.	1.2	58
22	Polyurethane foam containing microencapsulated phase-change materials with styrene–divinybenzene co-polymer shells. Journal of Materials Science, 2009, 44, 3141-3147.	1.7	100
23	Effects of ammonium chloride and heat treatment on residual formaldehyde contents of melamine-formaldehyde microcapsules. Colloid and Polymer Science, 2007, 285, 1691-1697.	1.0	53