List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5644091/publications.pdf Version: 2024-02-01

SHIH-HUANG TUNG

#	ARTICLE	IF	CITATIONS
1	A New Reverse Wormlike Micellar System:Â Mixtures of Bile Salt and Lecithin in Organic Liquids. Journal of the American Chemical Society, 2006, 128, 5751-5756.	13.7	140
2	Insight into the mechanism and outcoupling enhancement of excimer-associated white light generation. Chemical Science, 2016, 7, 3556-3563.	7.4	108
3	Hierarchical Assemblies of Block-Copolymer-Based Supramolecules in Thin Films. Macromolecules, 2008, 41, 6453-6462.	4.8	106
4	One-Step Electrospinning To Produce Nonsolvent-Induced Macroporous Fibers with Ultrahigh Oil Adsorption Capability. Macromolecules, 2017, 50, 2528-2534.	4.8	102
5	Contrasting Effects of Temperature on the Rheology of Normal and Reverse Wormlike Micelles. Langmuir, 2007, 23, 372-376.	3.5	95
6	A facile strategy to achieve fully bio-based epoxy thermosets from eugenol. Green Chemistry, 2019, 21, 4475-4488.	9.0	95
7	Uniform Luminous Perovskite Nanofibers with Colorâ€Tunability and Improved Stability Prepared by Oneâ€5tep Core/Shell Electrospinning. Small, 2018, 14, e1704379.	10.0	93
8	Nanostructured Organic Semiconductors <i>via</i> Directed Supramolecular Assembly. ACS Nano, 2010, 4, 2721-2729.	14.6	86
9	Effects of Annealing Solvents on the Morphology of Block Copolymer-Based Supramolecular Thin Films. Macromolecules, 2012, 45, 1562-1569.	4.8	83
10	A Facile Route for Creating "Reverse―Vesicles: Insights into "Reverse―Self-Assembly in Organic Liquids. Journal of the American Chemical Society, 2008, 130, 8813-8817.	13.7	82
11	Conception of Stretchable Resistive Memory Devices Based on Nanostructureâ€Controlled Carbohydrateâ€ <i>block</i> â€Polyisoprene Block Copolymers. Advanced Functional Materials, 2017, 27, 1606161.	14.9	76
12	Synthesis, Morphology, and Sensory Applications of Multifunctional Rod–Coil–Coil Triblock Copolymers and Their Electrospun Nanofibers. ACS Applied Materials & Interfaces, 2012, 4, 3387-3395.	8.0	63
13	Solutionâ€Processable Dithienothiophenoquinoid (DTTQ) Structures for Ambientâ€Stable nâ€Channel Organic Field Effect Transistors. Advanced Functional Materials, 2017, 27, 1606761.	14.9	62
14	A silole copolymer containing a ladder-type heptacylic arene and naphthobisoxadiazole moieties for highly efficient polymer solar cells. Energy and Environmental Science, 2015, 8, 552-557.	30.8	61
15	Tunable electrical memory characteristics by the morphology of self-assembled block copolymers:PCBM nanocomposite films. Soft Matter, 2012, 8, 526-535.	2.7	60
16	Surfactant Vesicles for High-Efficiency Capture and Separation of Charged Organic Solutes. Langmuir, 2007, 23, 8965-8971.	3.5	53
17	Can Simple Salts Influence Self-Assembly in Oil? Multivalent Cations as Efficient Gelators of Lecithin Organosols. Langmuir, 2010, 26, 13831-13838.	3.5	53
18	A stable, efficient textile-based flexible perovskite solar cell with improved washable and deployable capabilities for wearable device applications. RSC Advances, 2017, 7, 54361-54368.	3.6	51

#	Article	IF	CITATIONS
19	Facile Preparation of Cu/Ag Core/Shell Electrospun Nanofibers as Highly Stable and Flexible Transparent Conductive Electrodes for Optoelectronic Devices. ACS Applied Materials & Interfaces, 2019, 11, 10118-10127.	8.0	50
20	Self-assembled organogels obtained by adding minute concentrations of a bile salt to AOT reverse micelles. Soft Matter, 2008, 4, 1086.	2.7	48
21	Mixtures of Lecithin and Bile Salt Can Form Highly Viscous Wormlike Micellar Solutions in Water. Langmuir, 2014, 30, 10221-10230.	3.5	47
22	Nonvolatile Organic Field-Effect Transistors Memory Devices Using Supramolecular Block Copolymer/Functional Small Molecule Nanocomposite Electret. ACS Applied Materials & Interfaces, 2015, 7, 5663-5673.	8.0	47
23	Fluorinated thienyl-quinoxaline-based D–ï€â€"A-type copolymer toward efficient polymer solar cells: synthesis, characterization, and photovoltaic properties. Polymer Chemistry, 2013, 4, 3411.	3.9	46
24	Facile Fabrication of Stretchable Touch-Responsive Perovskite Light-Emitting Diodes Using Robust Stretchable Composite Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 14408-14415.	8.0	46
25	Novel ultra-stable and highly luminescent white light-emitting diodes from perovskite quantum dots—Polymer nanofibers through biaxial electrospinning. APL Materials, 2019, 7, .	5.1	42
26	Templated Assembly of Block Copolymer toward Nonequilibrium Nanostructures in Thin Films. Macromolecules, 2009, 42, 5761-5765.	4.8	38
27	Solution Processable Pseudo <i>n</i> -Thienoacenes via Intramolecular S···S Lock for High Performance Organic Field Effect Transistors. Chemistry of Materials, 2020, 32, 1422-1429.	6.7	38
28	Bioâ€Based Transparent Conductive Film Consisting of Polyethylene Furanoate and Silver Nanowires for Flexible Optoelectronic Devices. Macromolecular Rapid Communications, 2018, 39, e1800271.	3.9	34
29	Environmentally Friendly Resistive Switching Memory Devices with DNA as the Active Layer and Bio-Based Polyethylene Furanoate as the Substrate. ACS Sustainable Chemistry and Engineering, 2020, 8, 5100-5106.	6.7	34
30	Strain-Stiffening Response in Transient Networks Formed by Reverse Wormlike Micelles. Langmuir, 2008, 24, 8405-8408.	3.5	33
31	Electrospun Poly(3â€hexylthiophene) Nanofibers with Highly Extended and Oriented Chains Through Secondary Electric Field for Highâ€Performance Fieldâ€Effect Transistors. Advanced Electronic Materials, 2015, 1, 1400028.	5.1	32
32	Control over Molecular Architectures of Carbohydrate-Based Block Copolymers for Stretchable Electrical Memory Devices. Macromolecules, 2018, 51, 4966-4975.	4.8	32
33	Blends of polythiophene nanowire/fluorine rubber with multiscale phase separation suitable for stretchable semiconductors. Polymer, 2018, 155, 146-151.	3.8	30
34	Molecular Interactions between Lecithin and Bile Salts/Acids in Oils and Their Effects on Reverse Micellization. Langmuir, 2013, 29, 3879-3888.	3.5	29
35	Effect of a conjugated/elastic block sequence on the morphology and electronic properties of polythiophene based stretchable block copolymers. Polymer Chemistry, 2019, 10, 5452-5464.	3.9	29
36	High performance solution-processable tetrathienoacene (TTAR) based small molecules for organic field effect transistors (OFETs). Chemical Communications, 2017, 53, 5898-5901.	4.1	28

#	Article	IF	CITATIONS
37	Solutionâ€Processed Highâ€Performance Tetrathienothiopheneâ€Based Small Molecular Blends for Ambipolar Charge Transport. Advanced Functional Materials, 2018, 28, 1801025.	14.9	28
38	Thienoisoindigo (TII)â€Based Quinoidal Small Molecules for Highâ€Performance nâ€Type Organic Field Effect Transistors. Advanced Science, 2021, 8, 2002930.	11.2	28
39	Small-angle neutron scattering measurement of silicon nanoparticle size. Nanotechnology, 2008, 19, 085715.	2.6	26
40	Solution-Processable Quinoidal Dithioalkylterthiophene-Based Small Molecules Pseudo-Pentathienoacenes <i>via</i> an Intramolecular S···S Lock for High-Performance n-Type Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2020, 12, 25081-25091.	8.0	26
41	Self-assembled structures in rod-coil block copolymers with hydrogen-bonded amphiphiles. Soft Matter, 2011, 7, 4198.	2.7	23
42	Heteroalkylâ€Substitution in Molecular Organic Semiconductors: Chalcogen Effect on Crystallography, Conformational Lock, and Charge Transport. Advanced Functional Materials, 2022, 32, .	14.9	22
43	Studies on blends of binary crystalline polymers: Miscibility and crystallization behavior in PBT/PAr(I27-T73). Polymer, 2006, 47, 8380-8388.	3.8	21
44	Accounting for ï€â€"ï€ stacking interactions in the mesoscopic models of conjugated polymers. Molecular Systems Design and Engineering, 2020, 5, 1137-1146.	3.4	21
45	A Solution Processable Dithioalkyl Dithienothiophene (DSDTT) Based Small Molecule and Its Blends for High Performance Organic Field Effect Transistors. ACS Nano, 2021, 15, 727-738.	14.6	21
46	Controlled Synthesis of Poly[(3-alkylthio)thiophene]s and Their Application to Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2021, 13, 31898-31909.	8.0	21
47	Nanostructured Polymers Prepared Using a Self-Assembled Nanofibrillar Scaffold as a Reverse Template. Journal of Physical Chemistry B, 2009, 113, 8026-8030.	2.6	20
48	Using a Single Electrospun Polymer Nanofiber to Enhance Carrier Mobility in Organic Field-Effect Transistors toward Nonvolatile Memory. ACS Applied Materials & Interfaces, 2014, 6, 5506-5515.	8.0	19
49	Effects of Alkali Cations and Halide Anions on the Self-Assembly of Phosphatidylcholine in Oils. Langmuir, 2016, 32, 12166-12174.	3.5	19
50	Organically modified clays as rheology modifiers and dispersing agents for epoxy packing of white LED. Composites Science and Technology, 2016, 132, 9-15.	7.8	18
51	Self-Assembly of Lecithin and Bile Salt in the Presence of Inorganic Salt in Water: Mesoscale Computer Simulation. Journal of Physical Chemistry B, 2017, 121, 7878-7888.	2.6	18
52	Facile one-pot synthesis of rod-coil bio-block copolymers and uncovering their role in forming the efficient stretchable touch-responsive light emitting diodes. Chemical Engineering Journal, 2021, 418, 129421.	12.7	17
53	Microdomain control in block copolymer-based supramolecular thin films through varying the grafting density of additives. Soft Matter, 2011, 7, 5660.	2.7	16
54	Self-assembled clay films with a platelet–void multilayered nanostructure and flame-blocking properties. Scientific Reports, 2013, 3, 2621.	3.3	16

#	Article	IF	CITATIONS
55	Phase Behavior and Structure of Supramolecules Formed by Poly(4-vinylpyridine) and Fanlike Benzoic Acid Derivative with Long Hydrophobic Tails. Macromolecules, 2015, 48, 717-724.	4.8	16
56	Facile 3D Boron Nitride Integrated Electrospun Nanofibrous Membranes for Purging Organic Pollutants. Nanomaterials, 2019, 9, 1383.	4.1	16
57	Iterative synthesis of monodisperse pendants for making comb-like polyurethanes. Polymer, 2017, 119, 1-12.	3.8	15
58	Sustainable Alternatives to Nondegradable Medical Plastics. ACS Sustainable Chemistry and Engineering, 2022, 10, 4792-4806.	6.7	15
59	Side Chain Effects on the Optoelectronic Properties and Self-Assembly Behaviors of Terthiophene–Thieno[3,4- <i>c</i>]pyrrole-4,6-dione Based Conjugated Polymers. Macromolecules, 2018, 51, 7828-7835.	4.8	14
60	Size-dependent phase separation and thermomechanical properties of thermoplastic polyurethanes. Polymer, 2020, 210, 123075.	3.8	14
61	Solutionâ€Processable Multifused Thiophene Small Molecules and Conjugated Polymer Semiconducting Blend for Organic Field Effect Transistor Application. Advanced Materials Technologies, 2021, 6, 2001028.	5.8	14
62	Poly(ether sulfone)-Based Anion Exchange Membranes Containing Dense Quaternary Ammonium Cations and Their Application for Fuel Cells. ACS Applied Energy Materials, 2021, 4, 2201-2217.	5.1	14
63	Tailored honeycomb-like polymeric films based on amphiphilic poly(urea/malonamide) dendrons. RSC Advances, 2016, 6, 91981-91990.	3.6	13
64	Honeycomb Surface with Shape Memory Behavior Fabricated via Breath Figure Process. Macromolecular Materials and Engineering, 2018, 303, 1700433.	3.6	13
65	Self-assembly of polystyrene-b-poly(4-vinylpyridine) in deoxycholic acid melt. Polymer, 2011, 52, 3994-4000.	3.8	12
66	Quinoidal thioalkyl-substituted bithiophene small molecule semiconductors for n-type organic field effect transistors. Journal of Materials Chemistry C, 2020, 8, 15450-15458.	5.5	12
67	Correlations between temperature-dependent rheology and electrostatic interactions in reverse wormlike micelles induced by inorganic salts. Soft Matter, 2020, 16, 3505-3513.	2.7	11
68	Light Down-Converter Based on Luminescent Nanofibers from the Blending of Conjugated Rod-Coil Block Copolymers and Perovskite through Electrospinning. Polymers, 2020, 12, 84.	4.5	10
69	On the Formation Mechanism of Nonsolvent-Induced Porous Polylactide Electrospun Fibers. ACS Applied Polymer Materials, 2021, 3, 5096-5104.	4.4	10
70	Biological Hydrogels Formed by Swollen Multilamellar Liposomes. Langmuir, 2015, 31, 13312-13320.	3.5	9
71	Crosslinkable high dielectric constant polymer dielectrics for low voltage organic fieldâ€effect transistor memory devices. Journal of Polymer Science Part A, 2016, 54, 3224-3236.	2.3	9
72	Dendrons with urea/malonamide linkages for gate insulators of n-channel organic thin film transistors. Reactive and Functional Polymers, 2016, 108, 86-93.	4.1	9

#	Article	IF	CITATIONS
73	Polymersomes with high loading capacity prepared by direct self-assembly of block copolymers in drugs. Polymer, 2018, 134, 117-124.	3.8	9
74	Self-assembly of micelles in organic solutions of lecithin and bile salt: Mesoscale computer simulation. Chemical Physics Letters, 2016, 664, 16-22.	2.6	8
75	Surface Energyâ€Mediated Selfâ€Patterning for High Performance Sprayâ€Deposited Organic Field Effect Transistors. Advanced Materials Interfaces, 2016, 3, 1500714.	3.7	8
76	Spontaneous origination of chirality in melts of diblock copolymers with rigid and flexible blocks. Polymer Science - Series C, 2013, 55, 74-85.	1.7	7
77	Molecular stacking structure and field-effect transistor characteristics of crystalline poly(3-hexylthiophene)-block-syndiotactic polypropylene through solvent selectivity. RSC Advances, 2014, 4, 23002-23009.	3.6	7
78	Solution Processable Pentafluorophenyl Endâ€Capped Dithienothiophene Organic Semiconductors for Holeâ€Transporting Organic Field Effect Transistors. Advanced Electronic Materials, 2022, 8, 2100648.	5.1	7
79	Effects of amorphous poly(3â€hexylthiophene) on activeâ€layer structure and solar cells performance. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 975-985.	2.1	6
80	Facile approach for rapid self-assembly of rod-coil block copolymers. Polymer, 2018, 139, 20-25.	3.8	5
81	Facile synthesis toward self-dispersible waterborne comb-like Poly(hydroxyaminoethers). Polymer, 2020, 196, 122464.	3.8	5
82	Photoelectric effect of hybrid ultraviolet-sensitized phototransistors from an n-type organic semiconductor and an all-inorganic perovskite quantum dot photosensitizer. Nanoscale, 2021, 13, 20498-20507.	5.6	5
83	Tunable Photoelectric Properties of nâ€∓ype Semiconducting Polymer:Small Molecule Blends for Red Light Sensing Phototransistors. Advanced Optical Materials, 2022, 10, .	7.3	5
84	On the length of lecithin reverse wormlike micelles induced by inorganic salts: Binding site matters. Journal of Molecular Liquids, 2021, 329, 115543.	4.9	4
85	Strengthening the Intrachain Interconnection of Polymers by the Naphthalene Diimide–Pyrene Complementary Interactions. Macromolecules, 2021, 54, 7282-7290.	4.8	4
86	Oligo(ethylene glycol) side chain effect on the physical properties and molecular arrangement of oligothiophene–isoindigo based conjugated polymers. Soft Matter, 2019, 15, 9468-9473.	2.7	3
87	Methyl-Branched Side Chains on Polythiophene Suppress Chain Mobility and Crystallization to Enhance Photovoltaic Performance. Macromolecules, 2021, 54, 3689-3699.	4.8	3
88	Amphiphilic Thermoresponsive Poly(Hydroxyaminoethers) as Effective Emulsifiers for Preparation of Waterborne Epoxy Resins. Macromolecular Materials and Engineering, 2022, 307, .	3.6	3
89	Electrospun Nanofibers: Uniform Luminous Perovskite Nanofibers with Color-Tunability and Improved Stability Prepared by One-Step Core/Shell Electrospinning (Small 22/2018). Small, 2018, 14, 1870103.	10.0	2
90	Organic Semiconductors: Surface Energy-Mediated Self-Patterning for High Performance Spray-Deposited Organic Field Effect Transistors (Adv. Mater. Interfaces 11/2016). Advanced Materials Interfaces, 2016, 3, .	3.7	0

#	Article	IF	CITATIONS
91	Tunable Phospholipid Nanopatterns Mediated by Cholesterol with Sub-3 nm Domain Size. Langmuir, 2019, 35, 3383-3390.	3.5	0
92	Additive-induced ordered structures formed by PC71BM fullerene derivatives. Soft Matter, 2021, 17, 810-814.	2.7	0