Diego J RamÃ³n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5642387/publications.pdf

Version: 2024-02-01

133 papers 12,328 citations

52 h-index 109 g-index

188 all docs

188
docs citations

188 times ranked 7971 citing authors

#	Article	IF	CITATIONS
1	Asymmetric Multicomponent Reactions (AMCRs): The New Frontier. Angewandte Chemie - International Edition, 2005, 44, 1602-1634.	13.8	1,555
2	Hydrogen Autotransfer in the $\langle i \rangle N \langle i \rangle$ -Alkylation of Amines and Related Compounds using Alcohols and Amines as Electrophiles. Chemical Reviews, 2010, 110, 1611-1641.	47.7	1,103
3	Alcohols as Electrophiles in CC Bond-Forming Reactions: The Hydrogen Autotransfer Process. Angewandte Chemie - International Edition, 2007, 46, 2358-2364.	13.8	520
4	Deep Eutectic Solvents: The Organic Reaction Medium of the Century. European Journal of Organic Chemistry, 2016, 2016, 612-632.	2.4	519
5	Enantioselective direct aldol reaction: the blossoming of modern organocatalysis. Tetrahedron: Asymmetry, 2007, 18, 2249-2293.	1.8	416
6	Organocatalytic enantioselective multicomponent reactions (OEMCRs). Tetrahedron: Asymmetry, 2007, 18, 693-700.	1.8	362
7	Enantioselective \hat{l} ±-heterofunctionalisation of carbonyl compounds: organocatalysis is the simplest approach. Tetrahedron: Asymmetry, 2006, 17, 1465-1492.	1.8	309
8	In the Arena of Enantioselective Synthesis, Titanium Complexes Wear the Laurel Wreath. Chemical Reviews, 2006, 106, 2126-2208.	47.7	254
9	Impregnated Ruthenium on Magnetite as a Recyclable Catalyst for the N-Alkylation of Amines, Sulfonamides, Sulfinamides, and Nitroarenes Using Alcohols as Electrophiles by a Hydrogen Autotransfer Process. Journal of Organic Chemistry, 2011, 76, 5547-5557.	3.2	214
10	Easy \hat{l}_{\pm} -alkylation of ketones with alcohols through a hydrogen autotransfer process catalyzed by RuCl2(DMSO)4. Tetrahedron, 2006, 62, 8988-9001.	1.9	212
11	Chiral Tertiary Alcohols Made By Catalytic Enantioselective Addition of Unreactive Zinc Reagents to Poorly Electrophilic Ketones?. Angewandte Chemie - International Edition, 2004, 43, 284-287.	13.8	183
12	[Ru(DMSO)4]Cl2 catalyzes the α-alkylation of ketones by alcohols. Tetrahedron Letters, 2005, 46, 3683-3686.	1.4	177
13	Impregnated copper on magnetite: an efficient and green catalyst for the multicomponent preparation of propargylamines under solvent free conditions. Organic and Biomolecular Chemistry, 2010, 8, 43-46.	2.8	174
14	RuCl2(DMSO)4 catalyzes the β-alkylation of secondary alcohols with primary alcohols through a hydrogen autotransfer process. Tetrahedron, 2006, 62, 8982-8987.	1.9	163
15	Transition-Metal-Free <i>O</i> -, <i>S</i> -, and <i>N</i> -Arylation of Alcohols, Thiols, Amides, Amines, and Related Heterocycles. Journal of Organic Chemistry, 2011, 76, 654-660.	3.2	159
16	Enantioselective Synthesis of Oxygen-, Nitrogen- and Halogen-Substituted Quaternary Carbon Centers. Current Organic Chemistry, 2004, 8, 149-183.	1.6	153
17	First enantioselective addition of dialkylzinc to ketones promoted by titanium(IV) derivatives. Tetrahedron Letters, 1998, 39, 1239-1242.	1.4	148
18	Selective N-monoalkylation of aromatic amines with benzylic alcohols by a hydrogen autotransfer process catalyzed by unmodified magnetite. Organic and Biomolecular Chemistry, 2009, 7, 2176.	2.8	141

#	Article	IF	CITATIONS
19	Arene-catalysed lithiation reactions with lithium at low temperature. Journal of the Chemical Society Chemical Communications, 1991, , 398-400.	2.0	134
20	Reductive deprotection of allyl, benzyl and sulfonyl substituted alcohols, amines and amides using a naphthalene-catalysed lithiation. Tetrahedron, 1997, 53, 14355-14368.	1.9	124
21	Deep eutectic solvents: cutting-edge applications in cross-coupling reactions. Green Chemistry, 2020, 22, 3668-3692.	9.0	124
22	New Methodologies Based on Arene-Catalyzed Lithiation Reactions and Their Application to Synthetic Organic Chemistry. European Journal of Organic Chemistry, 2000, 2000, 225-237.	2.4	122
23	First enantioselective addition of diethylzinc and dimethylzinc to prostereogenic ketones catalysed by camphorsulfonamide-titanium alkoxide derivatives. Tetrahedron, 1998, 54, 5651-5666.	1.9	120
24	Transition-Metal-Free Indirect FriedlÃ ¤ der Synthesis of Quinolines from Alcohols. Journal of Organic Chemistry, 2008, 73, 9778-9780.	3.2	120
25	Recent Advances in Asymmetric Organocatalyzed Conjugate Additions to Nitroalkenes. Molecules, 2017, 22, 895.	3.8	117
26	N-Alkylation of poor nucleophilic amines and derivatives with alcohols by a hydrogen autotransfer process catalyzed by copper(II) acetate: scope and mechanistic considerations. Tetrahedron, 2011, 67, 3140-3149.	1.9	115
27	trans-1-Sulfonylamino-2-isoborneolsulfonylaminocyclohexane Derivatives: Excellent Chiral Ligands for the Catalytic Enantioselective Addition of Organozinc Reagents to Ketones. Chemistry - A European Journal, 2006, 12, 4431-4445.	3.3	100
28	RuCl2(dmso)4 Catalyzes the Solvent-Free Indirect FriedlÃ#der Synthesis of Polysubstituted Quinolines from Alcohols. European Journal of Organic Chemistry, 2007, 2007, 1599-1605.	2.4	97
29	Shape-Persistent Nanosize Organometallic Complexes:Â Synthesis and Application in a Nanofiltration Membrane Reactor. Journal of Organic Chemistry, 2003, 68, 675-685.	3.2	96
30	Impregnated copper or palladium–copper on magnetite as catalysts for the domino and stepwise Sonogashira-cyclization processes: a straightforward synthesis of benzo[b]furans and indoles. Tetrahedron, 2012, 68, 1393-1400.	1.9	95
31	Highly enantioselective arylation of ketones. Tetrahedron: Asymmetry, 2003, 14, 1955-1957.	1.8	94
32	N-Alkylation of poor nucleophilic amine and sulfonamide derivatives with alcohols by a hydrogen autotransfer process catalyzed by copper(II) acetate. Tetrahedron Letters, 2010, 51, 325-327.	1.4	92
33	Bio-renewable enantioselective aldol reaction in natural deep eutectic solvents. Green Chemistry, 2016, 18, 1724-1730.	9.0	91
34	Simple Synthesis of 5-Substituted Resorcinols:  A Revisited Family of Interesting Bioactive Molecules. Journal of Organic Chemistry, 1997, 62, 417-421.	3.2	88
35	Synthesis of new C2-symmetrical bis(hydroxycamphorsulfonamide) ligands and their application in the enantioselective addition of dialkylzinc reagents to aldehydes and ketones. Tetrahedron: Asymmetry, 2003, 14, 1103-1114.	1.8	80
36	Impregnated Platinum on Magnetite as an Efficient, Fast, and Recyclable Catalyst for the Hydrosilylation of Alkynes. ACS Catalysis, 2012, 2, 1070-1078.	11.2	79

#	Article	IF	Citations
37	Catalyst-free multicomponent Strecker reaction in acetonitrile. Tetrahedron Letters, 2005, 46, 8471-8474.	1.4	74
38	Camphorsulfonamide derivatives: a new class of chiral catalysts for the titanium alkoxide-promoted addition of dialkylzinc to aldehydes. Tetrahedron: Asymmetry, 1997, 8, 2479-2496.	1.8	70
39	Impregnated palladium on magnetite, a new catalyst for the ligand-free cross-coupling Suzuki–Miyaura reaction. Tetrahedron, 2011, 67, 5432-5436.	1.9	70
40	Highly enantioselective addition of dialkylzinc reagents to ketones promoted by titanium tetraisopropoxide. Tetrahedron: Asymmetry, 2002, 13, 2291-2293.	1.8	66
41	New guidelines for testing "Deep eutectic solvents―toxicity and their effects on the environment and living beings. Science of the Total Environment, 2020, 704, 135382.	8.0	66
42	Cross-dehydrogenative coupling reaction using copper oxide impregnated on magnetite in deep eutectic solvents. Green Chemistry, 2016, 18, 826-833.	9.0	64
43	First practical cross-alkylation of primary alcohols with a new and recyclable impregnated iridium on magnetite catalyst. Chemical Communications, 2012, 48, 7628.	4.1	62
44	Deep Eutectic Solvent Compatible Metallic Catalysts: Cationic Pyridiniophosphine Ligands in Palladium Catalyzed Crossâ€Coupling Reactions. ChemCatChem, 2017, 9, 1269-1275.	3.7	62
45	Magnetite and Metalâ€Impregnated Magnetite Catalysts in Organic Synthesis: A Very Old Concept with New Promising Perspectives. ChemCatChem, 2016, 8, 49-67.	3.7	61
46	Synthesis of 3,5-Disubstituted Isoxazoles and Isoxazolines in Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2015, 3, 2343-2349.	6.7	59
47	Multicomponent synthesis of sulfonamides from triarylbismuthines, nitro compounds and sodium metabisulfite in deep eutectic solvents. Green Chemistry, 2019, 21, 4127-4132.	9.0	57
48	Straightforward Synthesis of Aromatic Imines from Alcohols and Amines or Nitroarenes Using an Impregnated Copper Catalyst. European Journal of Organic Chemistry, 2012, 2012, 4548-4554.	2.4	56
49	Naphthalene-catalysed lithiation of 3-chloro-2-chloromethyl-propene: A barbier-type practical alternative to the trimethylenemethane dianion. Tetrahedron Letters, 1992, 33, 2217-2220.	1.4	55
50	New masked \hat{l} -lithiocarbonyl compounds: preparation and synthetic applications. Tetrahedron, 1993, 49, 4923-4938.	1.9	55
51	Camphordisulfonamides: good chiral ligands for the addition of dialkylzinc to aliphatic aldehydes. Tetrahedron: Asymmetry, 2000, 11, 1629-1644.	1.8	55
52	Impregnated Copper on Magnetite as Recyclable Catalyst for the Addition of Alkoxy Diboron Reagents to Câ ⁻ C Double Bonds. Journal of Organic Chemistry, 2010, 75, 3458-3460.	3.2	55
53	One-step synthesis of substituted 6,8-dioxabicyclo[3.2.1]octanes: easy preparation of racemic frontalin, brevicomins, and related systems. Journal of Organic Chemistry, 1992, 57, 750-751.	3.2	53
54	Arene-catalysed reductive lithiation of tetrahydrofuran: improved synthesis of 1,5-diols. Tetrahedron, 1992, 48, 3585-3588.	1.9	53

#	Article	IF	Citations
55	Naphthalene-catalysed lithiation of functionalized chloroarenes: regioselective preparation and reactivity of functionalized lithioarenes. Tetrahedron, 1993, 49, 469-482.	1.9	52
56	Copper(II) acetate-catalyzed one-pot conversion of aldehydes into primary amides through a Beckmann-type rearrangement. Tetrahedron, 2012, 68, 3948-3951.	1.9	52
57	Masked lithium bishomoenolates: useful intermediates in organic synthesis. Journal of Organic Chemistry, 1991, 56, 3825-3831.	3.2	51
58	Impregnated palladium on magnetite as catalyst for multicomponent reductive amination reactions and other related reducing processes. Tetrahedron, 2011, 67, 8079-8085.	1.9	51
59	Nonreductive Enantioselective Ring Opening of N-(Methylsulfonyl) dicarboximides with Diisopropoxytitanium $\hat{l}_{\pm},\hat{l}_{\pm}\hat{d}_{\pm}\hat$	791,.6	50
60	(â~')-Frontalin: Synthesis using the Catalytic Enantioselective Addition of Dimethylzinc to a Ketone. European Journal of Organic Chemistry, 2003, 2003, 2745-2748.	2.4	50
61	Deep Eutectic Solvents as Reaction Media for the Palladiumâ€Catalysed Câ^'S Bond Formation: Scope and Mechanistic Studies. Chemistry - A European Journal, 2017, 23, 10522-10526.	3.3	50
62	Solid-Supported Palladium Catalysts in Sonogashira Reactions: Recent Developments. Catalysts, 2018, 8, 202.	3.5	50
63	Naphthalene-catalysed Lithiation of Chlorinated Nitrogenated Aromatic Heterocycles and Reaction with Electrophiles. Tetrahedron, 2000, 56, 4043-4052.	1.9	48
64	Efficiency in chemistry: from hydrogen autotransfer to multicomponent catalysis. Molecular Diversity, 2010, 14, 411-424.	3.9	48
65	Environmentally friendly and regioselective C3-alkylation of indoles with alcohols through a hydrogen autotransfer strategy. Tetrahedron Letters, 2013, 54, 3394-3397.	1.4	48
66	Naphthalene-catalysed lithiation of 3-chloro-2-chloromethylpropene in a Barbier-type process with carbonyl compounds. Tetrahedron, 1993, 49, 4117-4126.	1.9	46
67	Carbamoyl and thiocarbamoyl lithium: A new route by naphthalene-catalysed chlorine-lithium exchange. Tetrahedron Letters, 1993, 34, 7115-7118.	1.4	46
68	Unmodified Nanoâ€Powder Magnetite Catalyzes a Four―Component Azaâ€Sakurai Reaction. Advanced Synthesis and Catalysis, 2008, 350, 1235-1240.	4.3	46
69	A Bipyridineâ€Palladium Derivative as General Preâ€Catalyst for Crossâ€Coupling Reactions in Deep Eutectic Solvents. Advanced Synthesis and Catalysis, 2019, 361, 3868-3879.	4.3	44
70	Chiral tertiary alcohols from a trans-1-arenesulfonyl-amino-2-isoborneolsulfonylaminocyclohexane-catalyzed addition of organozincs to ketones. Tetrahedron: Asymmetry, 2005, 16, 3341-3344.	1.8	43
71	Synthesis of C2-symmetrical bis(1,2-hydroxy sulfonamide) ligands and application in the enantioselective addition of dialkylzinc to aldehydes. Tetrahedron: Asymmetry, 2002, 13, 1573-1579.	1.8	42
72	NCN–Pincer–Pd Complex as Catalyst for the Hiyama Reaction in Biomass-Derived Solvents. ACS Sustainable Chemistry and Engineering, 2018, 6, 5743-5748.	6.7	41

#	Article	IF	Citations
73	Catalytic Enantioselective Addition of MeMgBr and Other Grignard Reagents to Aldehydes. European Journal of Organic Chemistry, 2011, 2011, 6851-6855.	2.4	39
74	Palladium(II) Acetate as Catalyst for the N-Alkylation of Aromatic Amines, Sulfonamides, and Related Nitrogenated Compounds with Alcohols by a Hydrogen Autotransfer Process. Synthesis, 2011, 2011, 3730-3740.	2.3	38
75	Reductive opening of 2-phenyl-1,3-dioxolanes by a naphthalene-catalysed lithiation: synthetic applications. Tetrahedron, 1993, 49, 9535-9546.	1.9	35
76	Polymer supported trans-1-phenylsulfonylamino-2-isoborneolsulfonylaminocyclohexane ligand for the titanium catalyzed organozinc addition to ketones. Tetrahedron: Asymmetry, 2006, 17, 2054-2058.	1.8	35
77	Recent Advances on the Organocatalyzed Enantioselective & Enantioselective amp;#945;-heterofunctionalization of Carbonyl Compounds. Current Organic Chemistry, 2011, 15, 296-327.	1.6	35
78	Generation of allylic and benzylic organolithium reagents from the corresponding ester, amide, carbonate, carbamate and urea derivatives. Tetrahedron, 1999, 55, 11027-11038.	1.9	34
79	Enantioselective addition of organozinc reagents to carbonyl compounds. Pure and Applied Chemistry, 2005, 77, 2111-2119.	1.9	34
80	Dispersive liquid-liquid microextraction based on deep eutectic solvent for elemental impurities determination in oral and parenteral drugs by inductively coupled plasma optical emission spectrometry. Analytica Chimica Acta, 2021, 1185, 339052.	5.4	34
81	Impregnated palladium on magnetite as catalyst for direct arylation of heterocycles. Tetrahedron, 2016, 72, 1043-1050.	1.9	33
82	Asymmetric Organocatalysis in Deep Eutectic Solvents. European Journal of Organic Chemistry, 2021, 2021, 4065-4071.	2.4	33
83	Reductive Cleavage of Allyllic Ketals by an Arene-Catalysed Lithiation: A Simple and Direct Route to Masked Lithium Homoenolates. Tetrahedron, 1994, 50, 3437-3446.	1.9	32
84	\hat{l}_{\pm} -Nitrogenated organolithium compounds from \hat{l}_{\pm} -amidomethyl and \hat{l}_{\pm} -aminomethyl sulfones. Tetrahedron, 1997, 53, 4835-4856.	1.9	31
85	Toward the continuous-flow synthesis of chiral tertiary alcohols by enantioselective addition of organozinc reagents to ketones using nanosize isoborneol ligands. Tetrahedron: Asymmetry, 2008, 19, 537-541.	1.8	29
86	Enantioselective addition of organozinc reagents to ketones catalyzed by grafted isoborneolsulfonamide polymers and titanium isopropoxide. Tetrahedron: Asymmetry, 2009, 20, 65-67.	1.8	28
87	Naphthalene-catalysed lithiation of carbamoyl and thiocarbamoyl chlorides under Barbier-type reaction conditions. Tetrahedron, 1996, 52, 13739-13750.	1.9	27
88	Catalyzed addition of acid chlorides to alkynes by unmodified nano-powder magnetite: synthesis of chlorovinyl ketones, furans, and related cyclopentenone derivatives. Tetrahedron, 2013, 69, 7056-7065.	1.9	27
89	\hat{l}^3 -Functionalised \hat{l}^2 -methylene organolithium compounds from 3-chloro-2-(chloromethyl)propene: Synthetic applications. Tetrahedron, 1993, 49, 10103-10110.	1.9	26
90	Synthesis of camphorsulfonamide-based quinoline ligands and their N-oxides: first use in the enantioselective addition of organozinc reagents to aldehydes. Tetrahedron: Asymmetry, 2008, 19, 2600-2607.	1.8	26

#	Article	IF	CITATIONS
91	Multicomponent azide–alkyne cycloaddition catalyzed by impregnated bimetallic nickel and copper on magnetite. RSC Advances, 2014, 4, 23943-23951.	3.6	26
92	Impregnated palladium on magnetite as a water compatible catalyst for the cycloisomerization of alkynoic acid derivatives. Green Chemistry, 2018, 20, 2151-2157.	9.0	25
93	Intramolecular 1,6-hydride transfer in acyclic 1,6-diols: A mechanistic study. Tetrahedron, 1994, 50, 7307-7314.	1.9	24
94	Copper-Impregnated Magnetite as a Heterogeneous Catalyst for the Homocoupling of Terminal Alkynes. Synthesis, 2013, 45, 1373-1379.	2.3	24
95	Assessment of the organocatalytic activity of chiral l-Proline-based Deep Eutectic Solvents based on their structural features. Journal of Molecular Liquids, 2020, 313, 113573.	4.9	24
96	Direct generation of lithium homoenolates from 3-aryl $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones or esters by an arene-catalysed lithiation: Synthesis of substituted tetrahydrofurans and \hat{l}^3 -butyrolactones. Tetrahedron, 1997, 53, 2641-2652.	1.9	23
97	2-(3-Lithiopropyl)- and 2-(3-lithiopropyl)-2-methyl-1,3-dioxolane: New masked lithium bishomoenolates in the synthesis of bifunctionalized compounds. Tetrahedron Letters, 1990, 31, 3763-3766.	1.4	21
98	Palladium Mesoionic Carbene Pre-catalyst for General Cross-Coupling Transformations in Deep Eutectic Solvents. Frontiers in Chemistry, 2019, 7, 700.	3.6	21
99	Arene-catalysed lithiation of triflates and triflamides under barbier-type conditions: An indirect transformation of alcohols and amines into organolithium compounds. Tetrahedron, 1996, 52, 14341-14348.	1.9	20
100	Imidoyllithiums: Masked acyllithium reagents. Tetrahedron Letters, 1997, 38, 8903-8906.	1.4	20
101	Direct synthesis of \hat{l} -lactones from 2-(3-lithiopropyl)-1,3-dioxolane and carbonyl compounds. Tetrahedron Letters, 1990, 31, 3767-3770.	1.4	19
102	First catalytic enantioselective synthesis of the cocaine abuse therapeutic agent (S)-(+)-1-(4-{2-[bis(4-fluorophenyl)methoxy]ethyl}piperazin-1-yl)-2-phenyl-2-propanol. Tetrahedron: Asymmetry, 2007, 18, 400-405.	1.8	19
103	Imidoyl chlorides as starting materials for the preparation of masked acyllithium intermediates: synthetic applications. Tetrahedron, 1998, 54, 12007-12028.	1.9	18
104	Preparation of α,n-dilithiotoluene equivalents. Synthesis of tamoxifen. Tetrahedron, 2003, 59, 3219-3225.	1.9	18
105	Chiral Ligands with an Isoborneol-10-sulfonamide Structure: A Ten-Year Odyssey. Synlett, 2007, 2007, 2309-2320.	1.8	17
106	Cobaltâ€Impregnated Magnetite as General Heterogeneous Catalyst for the Hydroacylation Reaction of Azodicarboxylates. Advanced Synthesis and Catalysis, 2014, 356, 3039-3047.	4.3	17
107	Lithiophenylalkyllithiums: new dilithium reagents having both sp2- and sp3-hybridised remote carbanionic centres. Journal of Organometallic Chemistry, 2002, 663, 21-31.	1.8	16
108	Natural eutectogels: sustainable catalytic systems for C–C bond formation reactions. Green Chemistry, 2021, 23, 6555-6565.	9.0	16

#	Article	lF	Citations
109	Naphthalene-catalysed lithiation of N,N-diisopropylbenzamide and its methoxy derivatives. Tetrahedron, 1998, 54, 13629-13638.	1.9	15
110	Osmium impregnated on magnetite as a heterogeneous catalyst for the syn-dihydroxylation of alkenes. Applied Catalysis A: General, 2014, 470, 177-182.	4.3	15
111	Multicomponent Synthesis of Sulfones and Sulfides from Triarylbismuthines and Sodium Metabisulfite in Deep Eutectic Solvents. European Journal of Organic Chemistry, 2020, 2020, 3462-3467.	2.4	14
112	Six- and five-membered 3-alkoxy-2-lithiocycloalkenes: new stable non-anionic \hat{l}^2 -functionalised organolithium compounds. Tetrahedron, 2002, 58, 5163-5172.	1.9	13
113	Palladium(<scp>ii</scp>) oxide impregnated on magnetite as a catalyst for the synthesis of 4-arylcoumarins via a Heck-arylation/cyclization process. RSC Advances, 2016, 6, 36932-36941.	3.6	12
114	Enantioselective synthesis of (+)-gossonorol and related systems using organozinc reagents. Tetrahedron: Asymmetry, 2012, 23, 611-615.	1.8	11
115	A jackpot C–H activation protocol using simple ruthenium catalyst in deep eutectic solvents. Green Chemistry, 2022, 24, 4941-4951.	9.0	9
116	Asymmetric organocatalyzed Morita-Baylis-Hillman reactions. Catalysis, 0, , 223-252.	1.0	8
117	Deep Eutectic Solvent as a Sustainable Medium for C–C Bond Formation Via Multicomponent Radical Conjugate Additions. ACS Sustainable Chemistry and Engineering, 2021, 9, 7941-7947.	6.7	8
118	trans-1-Sulfonylamino-2-isoborneolsulfonylaminocyclohexane Derivatives: Excellent Chiral Ligands for the Catalytic Enantioselective Addition of Organozinc Reagents to Ketones. Chemistry - A European Journal, 2006, 12, 6727-6727.	3.3	6
119	Enantioselective Intermolecular Aldol Additions and Related Morita-Baylis-Hillman Processes. , 2011, , 245-342.		6
120	Impregnated Copper(II) Oxide on Magnetite as Catalyst for the Synthesis of Benzo[⟨i⟩b⟨/i⟩]furans from 2â€Hydroxyarylcarbonyl Derivatives and Alkynes. European Journal of Organic Chemistry, 2016, 2016, 4354-4360.	2.4	6
121	Unmodified Nano-Powder Magnetite or Iron(III) Oxide Catalyze the Easy and Fast Synthesis of 4-Substituted-4H-Pyrans. Synlett, 2011, 2011, 2017-2020.	1.8	4
122	Indiumâ€mediated allylation of carbonyl compounds in deep eutectic solvents. Applied Organometallic Chemistry, 2021, 35, e6418.	3.5	4
123	Alkylation of Ketones and Imines. , 2006, , 207-241.		3
124	Switching to duloxetine from selective serotonin reuptake inhibitors in non- or partial responders: Results from a Spanish sample. International Journal of Psychiatry in Clinical Practice, 2009, 13, 100-108.	2.4	3
125	Copper-Impregnated Magnetite as a Heterogeneous Catalyst for the Homocoupling of Terminal Alkynes. Synthesis, 2013, 45, 2768-2768.	2.3	3
126	Enantioselective α-Heterofunctionalization of Carbonyl Compounds., 2011,, 107-145.		1

#	Article	IF	CITATIONS
127	Synthesis of C2-Symmetrical Bis(1,2-hydroxy sulfonamide) Ligands and Application in the Enantioselective Addition of Dialkylzinc to Aldehydes ChemInform, 2003, 34, no.	0.0	O
128	Highly Enantioselective Addition of Dialkylzinc Reagents to Ketones Promoted by Titanium Tetraisopropoxide ChemInform, 2003, 34, no.	0.0	0
129	Synthesis of New C2-Symmetrical Bis(hydroxycamphorsulfonamide) Ligands and Their Application in the Enantioselective Addition of Dialkylzinc Reagents to Aldehydes and Ketones ChemInform, 2003, 34, no.	0.0	0
130	Highly Enantioselective Arylation of Ketones ChemInform, 2003, 34, no.	0.0	0
131	Chiral Tertiary Alcohols Made by Catalytic Enantioselective Addition of Unreactive Zinc Reagents to Poorly Electrophilic Ketones?. ChemInform, 2004, 35, no.	0.0	O
132	Asymmetric Multicomponent Reactions (AMCRs): The New Frontier. ChemInform, 2005, 36, no.	0.0	0
133	[Ru(DMSO)4]Cl2 Catalyzes the α-Alkylation of Ketones by Alcohols ChemInform, 2005, 36, no.	0.0	0