Carrie Haskell-Luevano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5642185/publications.pdf

Version: 2024-02-01

96 3,572 papers citations

35 h-index 57 g-index

97 all docs 97 docs citations 97 times ranked

2477 citing authors

#	Article	IF	CITATIONS
1	Agouti-related protein functions as an inverse agonist at a constitutively active brain melanocortin-4 receptor. Regulatory Peptides, 2001, 99, 1-7.	1.9	224
2	Characterization of the Neuroanatomical Distribution of Agouti-Related Protein Immunoreactivity in the Rhesus Monkey and the Rat*. Endocrinology, 1999, 140, 1408-1415.	1.4	205
3	Structure Activity Studies of the Melanocortin-4 Receptor by in Vitro Mutagenesis:  Identification of Agouti-Related Protein (AGRP), Melanocortin Agonist and Synthetic Peptide Antagonist Interaction Determinants. Biochemistry, 2001, 40, 6164-6179.	1.2	146
4	Pharmacological Characterization of 40 Human Melanocortin-4 Receptor Polymorphisms with the Endogenous Proopiomelanocortin-Derived Agonists and the Agouti-Related Protein (AGRP) Antagonistâ€,‡. Biochemistry, 2006, 45, 7277-7288.	1.2	135
5	Molecular Basis for the Interaction of [Nle4,d-Phe7]Melanocyte Stimulating Hormone with the Human Melanocortin-1 Receptor (Melanocyte α-MSH Receptor). Journal of Biological Chemistry, 1997, 272, 23000-23010.	1.6	128
6	The Proopiomelanocortin System. Annals of the New York Academy of Sciences, 1999, 885, 1-21.	1.8	126
7	Altered Expression of Agouti-Related Protein and Its Colocalization with Neuropeptide Y in the Arcuate Nucleus of the Hypothalamus during Lactation*. Endocrinology, 1999, 140, 2645-2650.	1.4	121
8	The melanocortin pathway and energy homeostasis: From discovery to obesity therapy. Molecular Metabolism, 2021, 48, 101206.	3.0	114
9	Discovery of Prototype Peptidomimetic Agonists at the Human Melanocortin Receptors MC1R and MC4R. Journal of Medicinal Chemistry, 1997, 40, 2133-2139.	2.9	97
10	Backbone Cyclic Peptidomimetic Melanocortin-4 Receptor Agonist as a Novel Orally Administrated Drug Lead for Treating Obesity. Journal of Medicinal Chemistry, 2008, 51, 1026-1034.	2.9	82
11	Compounds That Activate the Mouse Melanocortin-1 Receptor Identified by Screening a Small Molecule Library Based upon the \hat{l}^2 -Turn. Journal of Medicinal Chemistry, 1999, 42, 4380-4387.	2.9	78
12	αâ€MSH tripeptide analogs activate the melanocortin 1 receptor and reduce UVâ€induced DNA damage in human melanocytes. Pigment Cell and Melanoma Research, 2009, 22, 635-644.	1.5	74
13	Structureâ [^] Activity Relationships of the Melanocortin Tetrapeptide Ac-His-DPhe-Arg-Trp-NH2 at the Mouse Melanocortin Receptors. 1. Modifications at the His Position. Journal of Medicinal Chemistry, 2002, 45, 2801-2810.	2.9	7 3
14	Characterization of Melanocortin NDP-MSH Agonist Peptide Fragments at the Mouse Central and Peripheral Melanocortin Receptors. Journal of Medicinal Chemistry, 2001, 44, 2247-2252.	2.9	68
15	Structureâ 'Activity Relationships of the Melanocortin Tetrapeptide Ac-His-DPhe-Arg-Trp-NH2at the Mouse Melanocortin Receptors: A Part 2 Modifications at the Phe Position. Journal of Medicinal Chemistry, 2002, 45, 3073-3081.	2.9	68
16	Melanoma prevention strategy based on using tetrapeptide αâ€MSH analogs that protect human melanocytes from UVâ€induced DNA damage and cytotoxicity. FASEB Journal, 2006, 20, 1561-1563.	0.2	67
17	Identification of Putative Agouti-Related Protein(87â^'132)-Melanocortin-4 Receptor Interactions by Homology Molecular Modeling and Validation Using Chimeric Peptide Ligands. Journal of Medicinal Chemistry, 2004, 47, 2194-2207.	2.9	63
18	Voluntary exercise prevents the obese and diabetic metabolic syndrome of the melanocortinâ€4 receptor knockout mouse. FASEB Journal, 2009, 23, 642-655.	0.2	62

#	Article	IF	CITATIONS
19	Bench-top to clinical therapies: A review of melanocortin ligands from 1954 to 2016. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2414-2435.	1.8	60
20	Implication of the melanocortin-3 receptor in the regulation of food intake. European Journal of Pharmacology, 2011, 660, 80-87.	1.7	57
21	Structureâ Activity Relationships of the Melanocortin Tetrapeptide Ac-His-d-Phe-Arg-Trp-NH2at the Mouse Melanocortin Receptors. 4. Modifications at the Trp Position. Journal of Medicinal Chemistry, 2002, 45, 5736-5744.	2.9	53
22	A review of melanocortin receptor small molecule ligands. Peptides, 2005, 26, 2026-2036.	1.2	49
23	Ghrelin-induced food intake and growth hormone secretion are altered in melanocortin 3 and 4 receptor knockout mice. Peptides, 2005, 26, 1720-1727.	1.2	49
24	Altered Expression of Agouti-Related Protein and Its Colocalization with Neuropeptide Y in the Arcuate Nucleus of the Hypothalamus during Lactation. , 0, .		49
25	A Solid-Phase Approach to Mouse Melanocortin Receptor Agonists Derived from a Novel Thioether Cyclized Peptidomimetic Scaffold. Journal of the American Chemical Society, 2002, 124, 11046-11055.	6.6	48
26	Characterizations of the Unusual Dissociation Properties of Melanotropin Peptides from the Melanocortin Receptor, hMC1R. Journal of Medicinal Chemistry, 1996, 39, 432-435.	2.9	47
27	Pharmacological Characterization of 30 Human Melanocortin-4 Receptor Polymorphisms with the Endogenous Proopiomelanocortin-Derived Agonists, Synthetic Agonists, and the Endogenous Agouti-Related Protein Antagonist [,] . Biochemistry, 2010, 49, 4583-4600.	1.2	47
28	Structure–activity relationships of the melanocortin tetrapeptide Ac-His-DPhe-Arg-Trp-NH2 at the mouse melanocortin receptors. Peptides, 2003, 24, 73-82.	1.2	45
29	Progress in the Development of Melanocortin Receptor Selective Ligands. Current Pharmaceutical Design, 2004, 10, 3443-3479.	0.9	45
30	The 1,4-Benzodiazepine-2,5-dione Small Molecule Template Results in Melanocortin Receptor Agonists with Nanomolar Potencies. Journal of Medicinal Chemistry, 2008, 51, 1423-1431.	2.9	43
31	An in Vitro and in Vivo Investigation of Bivalent Ligands That Display Preferential Binding and Functional Activity for Different Melanocortin Receptor Homodimers. Journal of Medicinal Chemistry, 2016, 59, 3112-3128.	2.9	43
32	Food demand and meal size in mice with single or combined disruption of melanocortin type 3 and 4 receptors. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R1667-R1674.	0.9	41
33	Melanocortin Receptors: Identification and Characterization by Melanotropic Peptide Agonists and Antagonists. Pigment Cell & Melanoma Research, 1996, 9, 213-234.	4.0	38
34	Effect of MTII on food intake and brain c-Fos in melanocortin-3, melanocortin-4, and double MC3 and MC4 receptor knockout mice. Peptides, 2010, 31, 2314-2317.	1.2	38
35	1,4-Disubstituted-[1,2,3]triazolyl-Containing Analogues of MT-II: Design, Synthesis, Conformational Analysis, and Biological Activity. Journal of Medicinal Chemistry, 2014, 57, 9424-9434.	2.9	37
36	The effect of backbone cyclization on PK/PD properties of bioactive peptide-peptoid hybrids: The melanocortin agonist paradigm. Bioorganic and Medicinal Chemistry, 2010, 18, 580-589.	1.4	36

#	Article	IF	CITATIONS
37	A fragment of the Escherichia coli ClpB heat-shock protein is a micromolar melanocortin 1 receptor agonist. Bioorganic and Medicinal Chemistry Letters, 2015 , 25 , $5306-5308$.	1.0	36
38	Peptide and Small Molecules Rescue the Functional Activity and Agonist Potency of Dysfunctional Human Melanocortin-4 Receptor Polymorphisms,. Biochemistry, 2007, 46, 8273-8287.	1.2	35
39	Design and pharmacology of peptoids and peptide–peptoid hybrids based on the melanocortin agonists core tetrapeptide sequence. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 4505-4509.	1.0	34
40	Novel Agouti-Related-Protein-Based Melanocortin-1 Receptor Antagonist. Journal of Medicinal Chemistry, 2001, 44, 4114-4124.	2.9	31
41	N-Terminal Fatty Acylated His-dPhe-Arg-Trp-NH2Tetrapeptides:Â Influence of Fatty Acid Chain Length on Potency and Selectivity at the Mouse Melanocortin Receptors and Human Melanocytes. Journal of Medicinal Chemistry, 2005, 48, 3328-3336.	2.9	30
42	Characterization of aliphatic, cyclic, and aromatic N-terminally "capped―His-d-Phe-Arg-Trp-NH2 tetrapeptides at the melanocortin receptors. European Journal of Pharmacology, 2003, 462, 41-52.	1.7	29
43	Truncation studies of $\hat{l}\pm$ -melanotropin peptides identify tripeptide analogues exhibiting prolonged agonist bioactivity. Peptides, 1996, 17, 995-1002.	1.2	28
44	Discovery of a β-Hairpin Octapeptide, c[Pro-Arg-Phe-Phe-Dap-Ala-Phe-DPro], Mimetic of Agouti-Related Protein(87–132) [AGRP(87–132)] with Equipotent Mouse Melanocortin-4 Receptor (mMC4R) Antagonist Pharmacology. Journal of Medicinal Chemistry, 2015, 58, 4638-4647.	2.9	27
45	Synthesis and Pharmacology of $\hat{l}\pm/\hat{l}^2$ (sup>3-Peptides Based on the Melanocortin Agonist Ac-His-(scp>Phe-Arg-Trp-NH(sub>2 Sequence. ACS Medicinal Chemistry Letters, 2015, 6, 568-572.	1.3	27
46	Microwave-assisted solid-phase synthesis of side-chain to side-chain lactam-bridge cyclic peptides. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5708-5711.	1.0	27
47	Structureâ^'Activity Relationships of the Unique and Potent Agouti-Related Protein (AGRP)â^'Melanocortin Chimeric Tyr-c[β-Asp-His-DPhe-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH2Peptide Template. Journal of Medicinal Chemistry, 2005, 48, 3060-3075.	2.9	24
48	Ac-Trp-DPhe(p-I)-Arg-Trp-NH ₂ , a 250-Fold Selective Melanocortin-4 Receptor (MC4R) Antagonist over the Melanocortin-3 Receptor (MC3R), Affects Energy Homeostasis in Male and Female Mice Differently. ACS Chemical Neuroscience, 2016, 7, 1283-1291.	1.7	23
49	1,2,3-Triazole Rings as a Disulfide Bond Mimetic in Chimeric AGRP-Melanocortin Peptides: Design, Synthesis, and Functional Characterization. ACS Chemical Neuroscience, 2018, 9, 1001-1013.	1.7	23
50	Identification of Tetrapeptides from a Mixture Based Positional Scanning Library That Can Restore nM Full Agonist Function of the L106P, I69T, I102S, A219V, C271Y, and C271R Human Melanocortin-4 Polymorphic Receptors (hMC4Rs). Journal of Medicinal Chemistry, 2014, 57, 4615-4628.	2.9	22
51	Molecular Mechanism of the Constitutive Activation of the L250Q Human Melanocortin-4 Receptor Polymorphism. Chemical Biology and Drug Design, 2006, 67, 215-229.	1.5	21
52	Developing a Biased Unmatched Bivalent Ligand (BUmBL) Design Strategy to Target the GPCR Homodimer Allosteric Signaling (cAMP over l²-Arrestin 2 Recruitment) Within the Melanocortin Receptors. Journal of Medicinal Chemistry, 2019, 62, 144-158.	2.9	19
53	Elongation studies of the human agouti-related protein (AGRP) core decapeptide (Yc[CRFFNAFC]Y) results in antagonism at the mouse melanocortin-3 receptor. Peptides, 2003, 24, 263-270.	1.2	18
54	Melanocortin Tetrapeptide Ac-His-DPhe-Arg-Trp-NH ₂ Modified at the Para Position of the Benzyl Side Chain (DPhe): Importance for Mouse Melanocortin-3 Receptor Agonist versus Antagonist Activity. Journal of Medicinal Chemistry, 2008, 51, 5585-5593.	2.9	18

#	Article	IF	CITATIONS
55	A Direct in Vivo Comparison of the Melanocortin Monovalent Agonist Ac-His-DPhe-Arg-Trp-NH ₂ versus the Bivalent Agonist Ac-His-DPhe-Arg-Trp-PEDG20-His-DPhe-Arg-Trp-NH ₂ : A Bivalent Advantage. ACS Chemical Neuroscience, 2017, 8, 1262-1278.	1.7	17
56	Urea small molecule agonists on mouse melanocortin receptors. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2079-2082.	1.0	16
57	Stereochemical Studies of the Monocyclic Agouti-Related Protein (103â^122) Arg-Phe-Phe Residues:Â Conversion of a Melanocortin-4 Receptor Antagonist into an Agonist and Results in the Discovery of a Potent and Selective Melanocortin-1 Agonist. Journal of Medicinal Chemistry, 2004, 47, 6702-6710.	2.9	16
58	\hat{I}^3 2-Melanocyte stimulation hormone (\hat{I}^3 2-MSH) truncation studies results in the cautionary note that \hat{I}^3 2-MSH is not selective for the mouse MC3R over the mouse MC5R. Peptides, 2010, 31, 2304-2313.	1.2	16
59	Melanocortin Antagonist Tetrapeptides with Minimal Agonist Activity at the Mouse Melanocortin-3 Receptor. ACS Medicinal Chemistry Letters, 2015, 6, 123-127.	1.3	16
60	Chimeric NDP-MSH and MTII melanocortin peptides with agouti-related protein (AGRP) Arg-Phe-Phe amino acids possess agonist melanocortin receptor activity. Peptides, 2003, 24, 1899-1908.	1.2	15
61	A Macrocyclic Agouti-Related Protein/[Nle ⁴ ,DPhe ⁷]α-Melanocyte Stimulating Hormone Chimeric Scaffold Produces Subnanomolar Melanocortin Receptor Ligands. Journal of Medicinal Chemistry, 2017, 60, 805-813.	2.9	15
62	Structural Characterization and Pharmacology of a Potent (Cys101â^'Cys119, Cys110â^'Cys117) Bicyclic Agouti-Related Protein (AGRP) Melanocortin Receptor Antagonist. Journal of Medicinal Chemistry, 2004, 47, 5662-5673.	2.9	14
63	Incorporation of a Bioactive Reverse-Turn Heterocycle into a Peptide Template Using Solid-Phase Synthesis To Probe Melanocortin Receptor Selectivity and Ligand Conformations by 2D ¹ H NMR. Journal of Medicinal Chemistry, 2011, 54, 1379-1390.	2.9	14
64	A Review of Single-Nucleotide Polymorphisms in Orexigenic Neuropeptides Targeting G Protein-Coupled Receptors. ACS Chemical Neuroscience, 2018, 9, 1235-1246.	1.7	14
65	Comparative in Vivo Investigation of Intrathecal and Intracerebroventricular Administration with Melanocortin Ligands MTII and AGRP into Mice. ACS Chemical Neuroscience, 2018, 9, 320-327.	1.7	14
66	Structure–Activity Relationship Studies on a Macrocyclic Agouti-Related Protein (AGRP) Scaffold Reveal Agouti Signaling Protein (ASP) Residue Substitutions Maintain Melanocortin-4 Receptor Antagonist Potency and Result in Inverse Agonist Pharmacology at the Melanocortin-5 Receptor. Journal of Medicinal Chemistry, 2017, 60, 8103-8114.	2.9	13
67	Effect of serotonergic anorectics on food intake and induction of Fos in brain of mice with disruption of melanocortin 3 and/or 4 receptors. Pharmacology Biochemistry and Behavior, 2010, 97, 107-111.	1.3	12
68	Synthesis, Biophysical, and Pharmacological Evaluation of the Melanocortin Agonist AST3-88: Modifications of Peptide Backbone at Trp 7 Position Lead to a Potent, Selective, and Stable Ligand of the Melanocortin 4 Receptor (MC4R). ACS Chemical Neuroscience, 2014, 5, 1020-1031.	1.7	12
69	Structure–Activity Relationship Studies of a Macrocyclic AGRP-Mimetic Scaffold c[Pro-Arg-Phe-Phe-Asn-Ala-Phe-DPro] Yield Potent and Selective Melanocortin-4 Receptor Antagonists and Melanocortin-5 Receptor Inverse Agonists That Increase Food Intake in Mice. ACS Chemical Neuroscience. 2018. 9. 1141-1151.	1.7	12
70	Development of hMC1R Selective Small Agonists for Sunless Tanning and Prevention of Genotoxicity of UV in Melanocytes. Journal of Investigative Dermatology, 2021, 141, 1819-1829.	0.3	12
71	Discovery of Mixed Pharmacology Melanocortin-3 Agonists and Melanocortin-4 Receptor Tetrapeptide Antagonist Compounds (TACOs) Based on the Sequence Ac-Xaa ¹ -Arg-(pl)DPhe-Xaa ⁴ -NH ₂ . Journal of Medicinal Chemistry, 2017. 60. 4342-4357.	2.9	11
72	Structure? Activity Relationships of Melanocortin Agonists Containing the Benzimidazole Scaffold. Chemical Biology and Drug Design, 2007, 69, 338-349.	1.5	10

#	Article	IF	Citations
73	Synergistic Multiresidue Substitutions of a Macrocyclic c[Pro-Arg-Phe-Phe-Asn-Ala-Phe- <scp>d</scp> Pro] Agouti-Related Protein (AGRP) Scaffold Yield Potent and >600-Fold MC4R versus MC3R Selective Melanocortin Receptor Antagonists. Journal of Medicinal Chemistry, 2018, 61, 7729-7740.	2.9	10
74	Structure–Activity Relationships of Peptides Incorporating a Bioactive Reverse-Turn Heterocycle at the Melanocortin Receptors: Identification of a 5800-fold Mouse Melanocortin-3 Receptor (mMC3R) Selective Antagonist/Partial Agonist versus the Mouse Melanocortin-4 Receptor (mMC4R). Journal of Medicinal Chemistry, 2013, 56, 2747-2763.	2.9	9
7 5	Structure-Activity Relationships (SAR) of Melanocortin and Agouti-Related (AGRP) Peptides. Advances in Experimental Medicine and Biology, 2010, 681, 1-18.	0.8	7
76	Functional characterization of the modified melanocortin peptides responsible for ligand selectivity at the human melanocortin receptors. Peptides, 2006, 27, 2836-2845.	1.2	6
77	Discovery of Polypharmacological Melanocortin-3 and -4 Receptor Probes and Identification of a 100-Fold Selective nM MC3R Agonist versus a μM MC4R Partial Agonist. Journal of Medicinal Chemistry, 2019, 62, 2738-2749.	2.9	6
78	Comparative Functional Alanine Positional Scanning of the α-Melanocyte Stimulating Hormone and NDP-Melanocyte Stimulating Hormone Demonstrates Differential Structure–Activity Relationships at the Mouse Melanocortin Receptors. ACS Chemical Neuroscience, 2016, 7, 984-994.	1.7	5
79	Incorporation of Agouti-Related Protein (AgRP) Human Single Nucleotide Polymorphisms (SNPs) in the AgRP-Derived Macrocyclic Scaffold c[Pro-Arg-Phe-Phe-Asn-Ala-Phe-dPro] Decreases Melanocortin-4 Receptor Antagonist Potency and Results in the Discovery of Melanocortin-5 Receptor Antagonists. Journal of Medicinal Chemistry, 2020, 63, 2194-2208.	2.9	5
80	Human \hat{l}^2 -Defensin $\hat{A}1$ and \hat{l}^2 -Defensin $\hat{A}3$ (Mouse Ortholog mBD14) Function as Full Endogenous Agonists at Select Melanocortin Receptors. Journal of Medicinal Chemistry, 2018, 61, 3738-3744.	2.9	4
81	Discovery of Melanocortin Ligands via a Double Simultaneous Substitution Strategy Based on the Ac-His-dPhe-Arg-Trp-NH2 Template. ACS Chemical Neuroscience, 2018, 9, 2753-2766.	1.7	4
82	Structure–Activity Relationships of the Tetrapeptide Ac-His-Arg-(pl)DPhe-Tic-NH2 at the Mouse Melanocortin Receptors: Modification at the (pl)DPhe Position Leads to mMC3R Versus mMC4R Selective Ligands. Molecules, 2019, 24, 1463.	1.7	4
83	Allosteric Modulators of Drug Targets. Journal of Medicinal Chemistry, 2019, 62, 1-2.	2.9	4
84	Comparative Intracerebroventricular and Intrathecal Administration of a Nanomolar Macrocyclic Melanocortin Receptor Agonist MDE6-5-2c (c[Pro-His-DPhe-Arg-Trp-Dap-Ala-DPro]) Decreases Food Intake in Mice. ACS Chemical Neuroscience, 2020, 11, 3051-3063.	1.7	4
85	Functional Mixture-Based Positional Scan Identifies a Library of Antagonist Tetrapeptide Sequences (LAtTeS) with Nanomolar Potency for the Melanocortin-4 Receptor and Equipotent with the Endogenous AGRP(86-132) Antagonist. Journal of Medicinal Chemistry, 2021, 64, 14860-14875.	2.9	4
86	Csf2 and Ptgs2 Epigenetic Dysregulation in Diabetes-prone Bicongenic B6.NODC11bxC1tb Mice. Genetics & Epigenetics, 2015, 7, GEG.S29696.	2.5	3
87	Synthesis and Structure–Activity Relationships of Substituted Urea Derivatives on Mouse Melanocortin Receptors. ACS Chemical Neuroscience, 2016, 7, 196-205.	1.7	3
88	Arg-Phe-Phe <scp>d</scp> -Amino Acid Stereochemistry Scan in the Macrocyclic Agouti-Related Protein Antagonist Scaffold c[Pro-Arg-Phe-Phe-Xxx-Ala-Phe-DPro] Results in Unanticipated Melanocortin-1 Receptor Agonist Profiles. ACS Chemical Neuroscience, 2018, 9, 3015-3023.	1.7	3
89	Single Nucleotide Polymorphisms in the Melanocortin His-Phe-Arg-Trp Sequences Decrease Tetrapeptide Potency and Efficacy. ACS Medicinal Chemistry Letters, 2020, 11, 272-277.	1.3	3
90	Discovery of Molecular Interactions of the Human Melanocortin-4 Receptor (hMC4R) Asp189 (D189) Amino Acid with the Endogenous G-Protein-Coupled Receptor (GPCR) Antagonist Agouti-Related Protein (AGRP) Provides Insights to AGRP's Inverse Agonist Pharmacology at the hMC4R. ACS Chemical Neuroscience, 2021, 12, 542-556.	1.7	3

#	Article	IF	CITATIONS
91	Discovery of Nanomolar Melanocortin-3 Receptor (MC3R)-Selective Small Molecule Pyrrolidine Bis-Cyclic Guanidine Agonist Compounds Via a High-Throughput "Unbiased―Screening Campaign. Journal of Medicinal Chemistry, 2021, 64, 5577-5592.	2.9	3
92	Peptoid NPhe4in AGRP-Based c[Pro1-Arg2-Phe3-Phe4-Xxx5-Ala6-Phe7-DPro8] Scaffolds Maintain Mouse MC4R Antagonist Potency. ACS Medicinal Chemistry Letters, 2020, 11, 1942-1948.	1.3	2
93	Investigating Metabolic Gender Differences with Melanocortin Antagonist SKY 2-23-7., 2015, , .		2
94	Multiresidue Tetrapeptide Substitutions Yield a 140-fold Selective Melanocortin-3 over Melanocortin-4 Receptor Agonist. ACS Medicinal Chemistry Letters, 2021, 12, 115-120.	1.3	1
95	Allosteric Modulators of Drug Targets Special Issue. Journal of Medicinal Chemistry, 2018, 61, 1381-1381.	2.9	O
96	Discovery of a Ligand that Compensates for Decreased Endogenous Agonist Potency of Melanocortin-4 Receptor Polymorphisms Identified in Obese Humans. Advances in Experimental Medicine and Biology, 2009, 611, 509-510.	0.8	0