Andreas F Haag

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5641921/publications.pdf

Version: 2024-02-01

516710 501196 1,068 29 16 28 citations h-index g-index papers 31 31 31 1370 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Protection of Sinorhizobium against Host Cysteine-Rich Antimicrobial Peptides Is Critical for Symbiosis. PLoS Biology, 2011, 9, e1001169.	5.6	167
2	<i>Staphylococcus aureus</i> in Animals. Microbiology Spectrum, 2019, 7, .	3.0	113
3	Molecular insights into bacteroid development during <i>Rhizobium–</i> legume symbiosis. FEMS Microbiology Reviews, 2013, 37, 364-383.	8.6	106
4	Role of Cysteine Residues and Disulfide Bonds in the Activity of a Legume Root Nodule-specific, Cysteine-rich Peptide. Journal of Biological Chemistry, 2012, 287, 10791-10798.	3.4	78
5	Essential Role for the BacA Protein in the Uptake of a Truncated Eukaryotic Peptide in <i>Sinorhizobium meliloti</i> . Journal of Bacteriology, 2009, 191, 1519-1527.	2.2	71
6	BacA Is Essential for Bacteroid Development in Nodules of Galegoid, but not Phaseoloid, Legumes. Journal of Bacteriology, 2010, 192, 2920-2928.	2,2	67
7	The Role of Two-Component Signal Transduction Systems in Staphylococcus aureus Virulence Regulation. Current Topics in Microbiology and Immunology, 2015, 409, 145-198.	1.1	66
8	Importance of Lipopolysaccharide and Cyclic <i>\hat{l}^2</i> -1,2-Glucans in <i>Brucella</i> -Mammalian Infections. International Journal of Microbiology, 2010, 2010, 1-12.	2.3	48
9	Bacterial chromosomal mobility via lateral transduction exceeds that of classical mobile genetic elements. Nature Communications, 2021, 12, 6509.	12.8	46
10	The Sinorhizobium meliloti LpxXL and AcpXL Proteins Play Important Roles in Bacteroid Development within Alfalfa. Journal of Bacteriology, 2009, 191, 4681-4686.	2.2	43
11	Systematic Reconstruction of the Complete Two-Component Sensorial Network in Staphylococcus aureus. MSystems, 2020, 5, .	3.8	30
12	Partial Complementation of Sinorhizobium meliloti bacA Mutant Phenotypes by the Mycobacterium tuberculosis BacA Protein. Journal of Bacteriology, 2013, 195, 389-398.	2.2	24
13	Exploring host-pathogen interactions through genome wide protein microarray analysis. Scientific Reports, 2016, 6, 27996.	3.3	24
14	Molecular Basis of Ligand-Dependent Regulation of NadR, the Transcriptional Repressor of Meningococcal Virulence Factor NadA. PLoS Pathogens, 2016, 12, e1005557.	4.7	24
15	A regulatory cascade controls Staphylococcus aureus pathogenicity island activation. Nature Microbiology, 2021, 6, 1300-1308.	13.3	20
16	Sak and Sak4 recombinases are required for bacteriophage replication in Staphylococcus aureus. Nucleic Acids Research, 2017, 45, 6507-6519.	14.5	20
17	Biochemical Characterization of Sinorhizobium meliloti Mutants Reveals Gene Products Involved in the Biosynthesis of the Unusual Lipid A Very Long-chain Fatty Acid. Journal of Biological Chemistry, 2011, 286, 17455-17466.	3.4	19
18	The impact of two-component sensorial network in staphylococcal speciation. Current Opinion in Microbiology, 2020, 55, 40-47.	5.1	17

#	Article	IF	CITATIONS
19	Absence of Protein A Expression Is Associated With Higher Capsule Production in Staphylococcal Isolates. Frontiers in Microbiology, 2019, 10, 863.	3.5	16
20	<i>In Vivo</i> Analysis of Staphylococcus aureus-Infected Mice Reveals Differential Temporal and Spatial Expression Patterns of <i>fhuD2</i> Infection and Immunity, 2017, 85, .	2.2	9
21	Radical genome remodelling accompanied the emergence of a novel host-restricted bacterial pathogen. PLoS Pathogens, 2021, 17, e1009606.	4.7	9
22	A stable luciferase reporter plasmid for in vivo imaging in murine models of Staphylococcus aureus infections. Applied Microbiology and Biotechnology, 2016, 100, 3197-3206.	3.6	8
23	Phage-inducible chromosomal islands promote genetic variability by blocking phage reproduction and protecting transductants from phage lysis. PLoS Genetics, 2022, 18, e1010146.	3.5	8
24	Positive-selection vector for direct protein expression. BioTechniques, 2009, 46, 453-457.	1.8	6
25	Adaptations of Cold- and Pressure-Loving Bacteria to the Deep-Sea Environment: Cell Envelope and Flagella. , 2017, , 51-80.		6
26	The meningococcal vaccine antigen GNA2091 is an analogue of YraP and plays key roles in outer membrane stability and virulence. FASEB Journal, 2019, 33, 12324-12335.	0.5	6
27	Rebooting Synthetic Phage-Inducible Chromosomal Islands: One Method to Forge Them All. Biodesign Research, 2020, 2020, .	1.9	6
28	Molecular insights into bacteroid development duringRhizobium-legume symbiosis. FEMS Microbiology Reviews, 2012, , n/a-n/a.	8.6	2
29	Multilayer Regulation of Neisseria meningitidis NHBA at Physiologically Relevant Temperatures. Microorganisms, 2022, 10, 834.	3 . 6	1