Wenli Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5641069/publications.pdf

Version: 2024-02-01

41344 51608 8,241 129 49 86 citations h-index g-index papers 132 132 132 7586 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis Strategies of Porous Carbon for Supercapacitor Applications. Small Methods, 2020, 4, 1900853.	8.6	403
2	Aqueous Zinc-lon Storage in MoS ₂ by Tuning the Intercalation Energy. Nano Letters, 2019, 19, 3199-3206.	9.1	362
3	3 D Hierarchical Porous Carbon for Supercapacitors Prepared from Lignin through a Facile Templateâ€Free Method. ChemSusChem, 2015, 8, 2114-2122.	6.8	247
4	Recent developments and advances in boron-doped diamond electrodes for electrochemical oxidation of organic pollutants. Separation and Purification Technology, 2019, 212, 802-821.	7.9	233
5	Sodium-ion battery anodes: Status and future trends. EnergyChem, 2019, 1, 100012.	19.1	217
6	Graphitic Nanocarbon with Engineered Defects for Highâ€Performance Potassiumâ€lon Battery Anodes. Advanced Functional Materials, 2019, 29, 1903641.	14.9	212
7	Porous MXenes enable high performance potassium ion capacitors. Nano Energy, 2019, 62, 853-860.	16.0	190
8	Electrochemical Zinc Ion Capacitors Enhanced by Redox Reactions of Porous Carbon Cathodes. Advanced Energy Materials, 2020, 10, 2001705.	19.5	189
9	Lignin Laser Lithography: A Directâ€Write Method for Fabricating 3D Graphene Electrodes for Microsupercapacitors. Advanced Energy Materials, 2018, 8, 1801840.	19.5	179
10	Phenanthroline Covalent Organic Framework Electrodes for High-Performance Zinc-Ion Supercapattery. ACS Energy Letters, 2020, 5, 2256-2264.	17.4	175
11	Facile Stabilization of the Sodium Metal Anode with Additives: Unexpected Key Role of Sodium Polysulfide and Adverse Effect of Sodium Nitrate. Angewandte Chemie - International Edition, 2018, 57, 7734-7737.	13.8	165
12	Direct Pyrolysis of Supermolecules: An Ultrahigh Edgeâ€Nitrogen Doping Strategy of Carbon Anodes for Potassiumâ€lon Batteries. Advanced Materials, 2020, 32, e2000732.	21.0	164
13	A Siteâ€Selective Doping Strategy of Carbon Anodes with Remarkable Kâ€Ion Storage Capacity. Angewandte Chemie - International Edition, 2020, 59, 4448-4455.	13.8	162
14	Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications. Energy, 2017, 128, 618-625.	8.8	160
15	Ti ₃ C ₂ T _{<i>x</i>} MXene-Activated Fast Gelation of Stretchable and Self-Healing Hydrogels: A Molecular Approach. ACS Nano, 2021, 15, 2698-2706.	14.6	157
16	Electrochemical Zinc Ion Capacitors: Fundamentals, Materials, and Systems. Advanced Energy Materials, 2021, 11, 2100201.	19.5	156
17	Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications. Journal of Colloid and Interface Science, 2018, 530, 338-344.	9.4	155
18	Artificial Solid Electrolyte Interphase for Suppressing Surface Reactions and Cathode Dissolution in Aqueous Zinc Ion Batteries. ACS Energy Letters, 2019, 4, 2776-2781.	17.4	155

#	Article	IF	Citations
19	A green technology for the preparation of high capacitance rice husk-based activated carbon. Journal of Cleaner Production, 2016, 112, 1190-1198.	9.3	154
20	Conductive Metal–Organic Frameworks Selectively Grown on Laserâ€Scribed Graphene for Electrochemical Microsupercapacitors. Advanced Energy Materials, 2019, 9, 1900482.	19.5	142
21	Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance. Electrochimica Acta, 2015, 176, 1136-1142.	5.2	135
22	Hierarchical porous carbon derived from lignin for high performance supercapacitor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484, 518-527.	4.7	135
23	Simple synthesis of hierarchical porous carbon from Enteromorpha prolifera by a self-template method for supercapacitor electrodes. Journal of Power Sources, 2014, 270, 403-410.	7.8	123
24	Green self-assembly synthesis of porous lignin-derived carbon quasi-nanosheets for high-performance supercapacitors. Chemical Engineering Journal, 2020, 392, 123721.	12.7	121
25	Wearable Superhydrophobic Elastomer Skin with Switchable Wettability. Advanced Functional Materials, 2018, 28, 1800625.	14.9	115
26	Status of rechargeable potassium batteries. Nano Energy, 2021, 83, 105792.	16.0	113
27	Direct Laser Writing of Superhydrophobic PDMS Elastomers for Controllable Manipulation via Marangoni Effect. Advanced Functional Materials, 2017, 27, 1702946.	14.9	109
28	Solution synthesis of VSe2 nanosheets and their alkali metal ion storage performance. Nano Energy, 2018, 53, 11-16.	16.0	108
29	Hierarchical porous carbon based on the self-templating structure of rice husk for high-performance supercapacitors. RSC Advances, 2015, 5, 19294-19300.	3.6	107
30	Facile preparation of well-combined lignin-based carbon/ZnO hybrid composite with excellent photocatalytic activity. Applied Surface Science, 2017, 426, 206-216.	6.1	95
31	Dual-3D Femtosecond Laser Nanofabrication Enables Dynamic Actuation. ACS Nano, 2019, 13, 4041-4048.	14.6	90
32	Accordionâ€Like Carbon with High Nitrogen Doping for Fast and Stable K Ion Storage. Advanced Energy Materials, 2021, 11, 2101928.	19.5	88
33	Nickel-Based Membrane Electrodes Enable High-Rate Electrochemical Ammonia Recovery. Environmental Science & Enchnology, 2018, 52, 8930-8938.	10.0	83
34	Lignin Derived Porous Carbons: Synthesis Methods and Supercapacitor Applications. Small Methods, 2021, 5, e2100896.	8.6	80
35	Renewable lignin-based carbon with a remarkable electrochemical performance from potassium compound activation. Industrial Crops and Products, 2018, 124, 747-754.	5.2	77
36	Fabricating ZnO/lignin-derived flower-like carbon composite with excellent photocatalytic activity and recyclability. Carbon, 2020, 162, 256-266.	10.3	74

#	Article	IF	CITATIONS
37	Anodic oxidation of aspirin on PbO 2, BDD and porous Ti/BDD electrodes: Mechanism, kinetics and utilization rate. Separation and Purification Technology, 2015, 156, 124-131.	7.9	72
38	Metal/Metal Oxide Nanoparticles-Composited Porous Carbon for High-Performance Supercapacitors. Journal of Energy Storage, 2021, 38, 102479.	8.1	72
39	Hydrophobic networked PbO2 electrode for electrochemical oxidation of paracetamol drug and degradation mechanism kinetics. Chemosphere, 2018, 193, 89-99.	8.2	70
40	3D Laser Scribed Graphene Derived from Carbon Nanospheres: An Ultrahighâ€Power Electrode for Supercapacitors. Small Methods, 2019, 3, 1900005.	8.6	64
41	Solvent-tunable PDMS microlens fabricated by femtosecond laser direct writing. Journal of Materials Chemistry C, 2015, 3, 1751-1756.	5.5	62
42	On the electrochemical origin of the enhanced charge acceptance of the lead–carbon electrode. Journal of Materials Chemistry A, 2015, 3, 4399-4404.	10.3	61
43	High energy density PbO2/activated carbon asymmetric electrochemical capacitor based on lead dioxide electrode with three-dimensional porous titanium substrate. International Journal of Hydrogen Energy, 2014, 39, 17153-17161.	7.1	59
44	Artemisinin Attenuated Hydrogen Peroxide (H2O2)-Induced Oxidative Injury in SH-SY5Y and Hippocampal Neurons via the Activation of AMPK Pathway. International Journal of Molecular Sciences, 2019, 20, 2680.	4.1	58
45	Onâ€chip laser processing for the development of multifunctional microfluidic chips. Laser and Photonics Reviews, 2017, 11, 1600116.	8.7	57
46	Codoped Holey Graphene Aerogel by Selective Etching for Highâ€Performance Sodiumâ€Ion Storage. Advanced Energy Materials, 2020, 10, 2000099.	19.5	56
47	Lead-carbon electrode designed for renewable energy storage with superior performance in partial state of charge operation. Journal of Power Sources, 2017, 342, 183-191.	7.8	55
48	Mechanism and kinetics of the electrocatalytic hydrogenation of furfural to furfuryl alcohol. Journal of Electroanalytical Chemistry, 2017, 804, 248-253.	3.8	51
49	Enzymatic Hydrolysis Lignin-Derived Porous Carbons through Ammonia Activation: Activation Mechanism and Charge Storage Mechanism. ACS Applied Materials & Samp; Interfaces, 2022, 14, 5425-5438.	8.0	51
50	Rational design of carbon anodes by catalytic pyrolysis of graphitic carbon nitride for efficient storage of Na and K mobile ions. Nano Energy, 2021, 87, 106184.	16.0	50
51	Regulating the redox reversibility of zinc anode toward stable aqueous zinc batteries. Nano Energy, 2022, 99, 107331.	16.0	50
52	A Siteâ€Selective Doping Strategy of Carbon Anodes with Remarkable Kâ€Ion Storage Capacity. Angewandte Chemie, 2020, 132, 4478-4485.	2.0	48
53	Enhanced electrochemical performance of MnFe@NiFe Prussian blue analogue benefited from the inhibition of Mn ions dissolution for sodium-ion batteries. Chemical Engineering Journal, 2021, 411, 128518.	12.7	47
54	Three-dimensional Porous Framework Lignin-Derived Carbon/ZnO Composite Fabricated by a Facile Electrostatic Self-Assembly Showing Good Stability for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 16419-16427.	6.7	45

#	Article	IF	CITATIONS
55	Preparation and characterization of lead dioxide electrode with three-dimensional porous titanium substrate for electrochemical energy storage. Electrochimica Acta, 2014, 139, 209-216.	5.2	44
56	Effect of removing silica in rice husk for the preparation of activated carbon for supercapacitor applications. Chinese Chemical Letters, 2019, 30, 1315-1319.	9.0	44
57	Performance characterization of Ti substrate lead dioxide electrode with different solid solution interlayers. Journal of Materials Science, 2012, 47, 6709-6715.	3.7	42
58	Edge-enrich N-doped graphitic carbon: Boosting rate capability and cyclability for potassium ion battery. Chemical Engineering Journal, 2022, 432, 134321.	12.7	42
59	A Cyclized Polyacrylonitrile Anode for Alkali Metal Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 1355-1363.	13.8	41
60	Direct carbonization of sodium lignosulfonate through self-template strategies for the synthesis of porous carbons toward supercapacitor applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128191.	4.7	41
61	One-pot in-situ preparation of a lignin-based carbon/ZnO nanocomposite with excellent photocatalytic performance. Materials Chemistry and Physics, 2017, 199, 193-202.	4.0	38
62	Highly reversible lead-carbon battery anode with lead grafting on the carbon surface. Journal of Energy Chemistry, 2018, 27, 1674-1683.	12.9	38
63	Fabrication, characterization and electrocatalytic application of a lead dioxide electrode with porous titanium substrate. Journal of Alloys and Compounds, 2015, 650, 705-711.	5 . 5	37
64	Wettability-Driven Assembly of Electrochemical Microsupercapacitors. ACS Applied Materials & Amp; Interfaces, 2019, 11, 20905-20914.	8.0	37
65	A Hierarchical Three-Dimensional Porous Laser-Scribed Graphene Film for Suppressing Polysulfide Shuttling in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 18833-18839.	8.0	37
66	Enhanced electrochemical oxidation of organic pollutants by boron-doped diamond based on porous titanium. Separation and Purification Technology, 2015, 149, 124-131.	7.9	36
67	Anisotropic Growth of Alâ€Intercalated Vanadate by Tuning Surface Hydrophilicity for Highâ€Rate Znâ€Ion Storage. Small Structures, 2020, 1, 2000040.	12.0	35
68	Highâ€Capacity and Stable Sodiumâ€Sulfur Battery Enabled by Confined Electrocatalytic Polysulfides Full Conversion. Advanced Functional Materials, 2021, 31, 2100666.	14.9	35
69	Hierarchical porous carbon@PbO1-x composite for high-performance lead-carbon battery towards renewable energy storage. Energy, 2020, 193, 116675.	8.8	34
70	Tungsten Blue Oxide as a Reusable Electrocatalyst for Acidic Water Oxidation by Plasma-Induced Vacancy Engineering. CCS Chemistry, 2021, 3, 1553-1561.	7.8	34
71	Carbon nitride derived nitrogen-doped carbon nanosheets for high-rate lithium-ion storage. Chemical Engineering Science, 2021, 241, 116709.	3.8	34
72	Boosting Surfaceâ€Dominated Sodium Storage of Carbon Anode Enabled by Coupling Graphene Nanodomains, Nitrogenâ€Doping, and Nanoarchitecture Engineering. Advanced Functional Materials, 2022, 32, .	14.9	34

#	Article	IF	Citations
73	Towards renewable energy storage: Understanding the roles of rice husk-based hierarchical porous carbon in the negative electrode of lead-carbon battery. Journal of Energy Storage, 2019, 24, 100756.	8.1	31
74	Optimized lead carbon composite for enhancing the performance of lead-carbon battery under HRPSoC operation. Journal of Electroanalytical Chemistry, 2019, 832, 266-274.	3.8	31
75	Improved electrochemical performance of boron-doped diamond electrode depending on the structure of titanium substrate. Journal of Electroanalytical Chemistry, 2015, 758, 170-177.	3.8	30
76	Isomerism: Minor Changes in the Bromine Substituent Positioning Lead to Notable Differences in Photovoltaic Performance. CCS Chemistry, 2021, 3, 2591-2601.	7.8	30
77	Lamellar hierarchical lignin-derived porous carbon activating the capacitive property of polyaniline for high-performance supercapacitors. Journal of Colloid and Interface Science, 2022, 617, 694-703.	9.4	30
78	Effect of SnO ₂ ‧b ₂ O ₅ Interlayer on Electrochemical Performances of a Ti‧ubstrate Lead Dioxide Electrode. Chinese Journal of Chemistry, 2012, 30, 2059-2065.	4.9	26
79	Significance of PbO deposition ratio in activated carbon-based lead-carbon composites for lead-carbon battery under high-rate partial-state-of-charge operation. Electrochimica Acta, 2020, 338, 135868.	5.2	26
80	Lignin-based materials for electrochemical energy storage devices. Nano Materials Science, 2023, 5, 141-160.	8.8	26
81	Controllable assembly of silver nanoparticles induced by femtosecond laser direct writing. Science and Technology of Advanced Materials, 2015, 16, 024805.	6.1	25
82	Modification of a rice husk-based activated carbon by thermal treatment and its effect on its electrochemical performance as a supercapacitor electrode. New Carbon Materials, 2019, 34, 341-348.	6.1	25
83	A comprehensive green utilization strategy of lignocellulose from rice husk for the fabrication of high-rate electrochemical zinc ion capacitors. Journal of Cleaner Production, 2021, 327, 129522.	9.3	25
84	Supercapacitors operated at extremely low environmental temperatures. Journal of Materials Chemistry A, 2021, 9, 26603-26627.	10.3	25
85	Nitrogen-rich accordion-like lignin porous carbon via confined self-assembly template and in-situ mild activation strategy for high-performance supercapacitors. Journal of Colloid and Interface Science, 2022, 628, 90-99.	9.4	25
86	On the cycling stability of the supercapacitive performance of activated carbon in KOH and H 2 SO 4 electrolytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 511, 294-302.	4.7	23
87	Mechanistic insights into the electrochemical Li/Na/K-ion storage for aqueous bismuth anode. Energy Storage Materials, 2022, 45, 33-39.	18.0	23
88	Hierarchical Porous Carbon Prepared through Sustainable CuCl ₂ Activation of Rice Husk for Highâ€Performance Supercapacitors. ChemistrySelect, 2019, 4, 2314-2319.	1.5	22
89	Fly Ash Carbon Anodes for Alkali Metal-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 26421-26430.	8.0	22
90	Dual-templated synthesis of mesoporous lignin-derived honeycomb-like porous carbon/SiO2 composites for high-performance Li-ion battery. Microporous and Mesoporous Materials, 2021, 317, 111004.	4.4	21

#	Article	IF	CITATIONS
91	Zincophilic Laserâ€Scribed Graphene Interlayer for Homogeneous Zinc Deposition and Stable Zincâ€Ion Batteries. Energy Technology, 2021, 9, 2100490.	3.8	21
92	Converting amorphous kraft lignin to hollow carbon shell frameworks as electrode materials for lithium-ion batteries and supercapacitors. Industrial Crops and Products, 2021, 174, 114184.	5.2	21
93	Multi-scale self-templating synthesis strategy of lignin-derived hierarchical porous carbons toward high-performance zinc ion hybrid supercapacitors. Journal of Energy Storage, 2022, 53, 105095.	8.1	21
94	Effect of polyvinyl alcohol/nano-carbon colloid on the electrochemical performance of negative plates of lead acid battery. Journal of Electroanalytical Chemistry, 2019, 832, 152-157.	3.8	20
95	Atomically Dispersed Manganese Lewis Acid Sites Catalyze Electrohydrogenation of Nitrogen to Ammonia. CCS Chemistry, 2022, 4, 2115-2126.	7.8	19
96	Sustainable production of lignin-derived porous carbons for high-voltage electrochemical capacitors. Chemical Engineering Science, 2022, 255, 117672.	3.8	19
97	Light-Driven Magnetic Encoding for Hybrid Magnetic Micromachines. Nano Letters, 2021, 21, 1628-1635.	9.1	17
98	Photodynamic assembly of nanoparticles towards designable patterning. Nanoscale Horizons, 2016, 1, 201-211.	8.0	16
99	Hierarchical porous carbon nanofibers with enhanced capacitive behavior as a flexible self-supporting anode for boosting potassium storage. Journal of Power Sources, 2022, 523, 231043.	7.8	16
100	Facile Self-templating Melting Route Preparation of Biomass-derived Hierarchical Porous Carbon for Advanced Supercapacitors. Chemical Research in Chinese Universities, 2018, 34, 983-988.	2.6	15
101	A N-doped rice husk-based porous carbon as an electrocatalyst for the oxygen reduction reaction. New Carbon Materials, 2020, 35, 401-409.	6.1	15
102	Mechanism orienting structure construction of electrodes for aqueous electrochemical energy storage systems: a review. Nanoscale, 2021, 13, 3412-3435.	5.6	15
103	Hierarchical porous carbon derived from Allium cepa for supercapacitors through direct carbonization method with the assist of calcium acetate. Chinese Chemical Letters, 2017, 28, 2295-2297.	9.0	14
104	Insights into Gas-Exfoliation and the In-Situ Template Mechanism of Zinc Compound for Lignin-Derived Supercapacitive Porous Carbon. ACS Applied Energy Materials, 2021, 4, 13617-13626.	5.1	14
105	Multi-stage explosion of lignin: a new horizon for constructing defect-rich carbon towards advanced lithium ion storage. Green Chemistry, 2022, 24, 5941-5951.	9.0	14
106	Preparation of active carbon through one-step NaOH activation of coconut shell biomass for phenolic wastewater treatment. Research on Chemical Intermediates, 2022, 48, 1665-1684.	2.7	13
107	Uniform zinc electrodeposition directed by interfacial cation reservoir for stable Zn–12 battery. Journal of Power Sources, 2022, 523, 231036.	7.8	13
108	Longâ€Life Leadâ€Acid Battery for Highâ€Rate Partialâ€Stateâ€ofâ€Charge Operation Enabled by a Riceâ€Huskâ Activated Carbon Negative Electrode Additive. ChemistrySelect, 2020, 5, 2551-2558.	€Based 1.5	12

#	Article	IF	Citations
109	Template-free synthesis of lignin-derived 3D hierarchical porous carbon for supercapacitors. Journal of Materials Science: Materials in Electronics, 2021, 32, 7009-7018.	2.2	12
110	Multilayer two-dimensional lignin/ZnO composites with excellent anti-UV aging properties for polymer films. Green Chemical Engineering, 2022, 3, 338-348.	6.3	11
111	MoNi4–NiO heterojunction encapsulated in lignin-derived carbon for efficient hydrogen evolution reaction. Green Energy and Environment, 2023, 8, 1728-1736.	8.7	11
112	Two Series of Main-Group Heterometallic Selenides Synthesized in Two Different Types of Ionic Liquids. Inorganic Chemistry, 2021, 60, 4337-4341.	4.0	10
113	Oxygen-functionalized defect engineering of carbon additives enable lead-carbon batteries with high cycling stability. Journal of Energy Storage, 2021, 43, 103205.	8.1	10
114	Sodium Preâ€Intercalated Carbon/V ₂ O ₅ Constructed by Sustainable Sodium Lignosulfonate for Stable Cathodes in Zincâ€Ion Batteries: A Comprehensive Study. ChemSusChem, 2022, 15, .	6.8	10
115	Enhancement of All-Polymer Solar Cells by Addition of a Chlorinated Polymer and Formation of an Energy Cascade in a Nonhalogenated Solvent. ACS Applied Materials & Entraces, 2021, 13, 58754-58762.	8.0	9
116	Electrocatalysis in Room Temperature Sodiumâ€Sulfur Batteries: Tunable Pathway of Sulfur Speciation. Small Methods, 2022, 6, e2200335.	8.6	9
117	A Cyclized Polyacrylonitrile Anode for Alkali Metal Ion Batteries. Angewandte Chemie, 2021, 133, 1375-1383.	2.0	8
118	Thermal transfer during the activation process in LiSi/FeS2 thermal batteries. Chemical Research in Chinese Universities, 2016, 32, 665-668.	2.6	7
119	Marinite Li ₂ Ni(SO ₄) ₂ as a New Member of the Bisulfate Family of High-Voltage Lithium Battery Cathodes. Chemistry of Materials, 2021, 33, 6108-6119.	6.7	7
120	Design principles of lead-carbon additives toward better lead-carbon batteries. Current Opinion in Electrochemistry, 2021, 30, 100802.	4.8	7
121	Interconnected 3D carbon network with enhanced reaction kinetics and architecture stability for advanced potassium-ion hybrid capacitors. Physical Chemistry Chemical Physics, 2022, 24, 3440-3450.	2.8	6
122	Pyrolytic gas exfoliation and template mediation inducing defective mesoporous carbon network from industrial lignin for advanced lithium-ion storage. Industrial Crops and Products, 2022, 180, 114748.	5.2	6
123	Redox catalysis-promoted fast iodine kinetics for polyiodide-free Na–I ₂ electrochemistry. Journal of Materials Chemistry A, 2022, 10, 11325-11331.	10.3	6
124	In Situ Construction of ZnO/Ni2S3 Composite on Ni Foam by Combing Potentiostatic Deposition with Cyclic Voltammetric Electrodeposition. Micromachines, 2021, 12, 829.	2.9	3
125	Flexible Self-Supporting 3D Electrode Based on 3D Graphene-PPy@Fe-MnCo ₂ O ₄ Nanostructure Arrays toward High-Performance Wearable Supercapacitors. ACS Applied Energy Materials, 2022, 5, 5937-5946.	5.1	3
126	Allâ€Carbon Hybrid Mobile Ion Capacitors Enabled by 3D Laserâ€Scribed Graphene. Energy Technology, 2020, 8, 2000193.	3.8	2

#	Article	IF	CITATIONS
127	Bromination: Bromination: An Alternative Strategy for Nonâ€Fullerene Small Molecule Acceptors (Adv.) Tj ETQq1	1 0.78431 11.2	4 ₁ rgBT /O <mark>ve</mark>
128	Nitro-oleic acid decreases transcription of the angiotensin II type I receptor gene in aortic smooth muscle cells. Biotechnology and Bioprocess Engineering, 2014, 19, 740-746.	2.6	0
129	Corrigendum to "High energy density PbO2/activated carbon asymmetric electrochemical capacitor based on lead dioxide electrode with three-dimensional porous titanium substrate―[Int J Hydrogen Energy 39 (2014) 17153–17161]. International Journal of Hydrogen Energy, 2021, 46, 23580.	7.1	0