Sandro Altamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5640990/publications.pdf

Version: 2024-02-01

69 papers 3,226 citations

201385 27 h-index 55 g-index

72 all docs 72 docs citations

times ranked

72

5477 citing authors

#	Article	IF	CITATIONS
1	Macrophage-specific PLA2g6 deficiency exacerbates liver injury during bacterial sepsis via myelopoiesis activation in male mice. Zeitschrift Fur Gastroenterologie, 2022, 60, .	0.2	O
2	Constitutional PIGA mutations cause a novel subtype of hemochromatosis in patients with neurologic dysfunction. Blood, 2022, 139, 1418-1422.	0.6	8
3	Iron- and erythropoietin-resistant anemia in a spontaneous breast cancer mouse model. Haematologica, 2022, 107, 2454-2465.	1.7	3
4	Hfe Is Highly Expressed in Liver Sinusoidal Endothelial Cells But Is Not Needed to Maintain Systemic Iron Homeostasis In Vivo. HemaSphere, 2022, 6, e667.	1.2	3
5	Mouse multipotent progenitor 5 cells are located at the interphase between hematopoietic stem and progenitor cells. Blood, 2021, 137, 3218-3224.	0.6	27
6	20 years of Hepcidin: How far we have come. Seminars in Hematology, 2021, 58, 132-144.	1.8	16
7	Liver Sinusoidal Endothelial Cells Suppress Bone Morphogenetic Protein 2 Production in Response to TGFÎ ² Pathway Activation. Hepatology, 2021, 74, 2186-2200.	3.6	13
8	Iron aggravates hepatic insulin resistance in the absence of inflammation in a novel db/db mouse model with iron overload. Molecular Metabolism, 2021, 51, 101235.	3.0	46
9	Atherosclerosis is aggravated by iron overload and ameliorated by dietary and pharmacological iron restriction. European Heart Journal, 2020, 41, 2681-2695.	1.0	162
10	Glutathione peroxidase 4 and vitamin E control reticulocyte maturation, stress erythropoiesis and iron homeostasis. Haematologica, 2020, 105, 937-950.	1.7	42
11	Hypoferremia is Associated With Increased Hospitalization and Oxygen Demand in COVIDâ€19ÂPatients. HemaSphere, 2020, 4, e492.	1.2	58
12	Iron Regulation in Elderly Asian Elephants (Elephas maximus) Chronically Infected With Mycobacterium tuberculosis. Frontiers in Veterinary Science, 2020, 7, 596379.	0.9	4
13	Regulation of iron homeostasis: Lessons from mouse models. Molecular Aspects of Medicine, 2020, 75, 100872.	2.7	16
14	Hemochromatosis proteins are dispensable for the acute hepcidin response to BMP2. Haematologica, 2020, 105, e493.	1.7	8
15	Disruption of the hepcidin/ferroportin regulatory circuitry causes low axial bone mass in mice. Bone, 2020, 137, 115400.	1.4	11
16	Differential Alternative Polyadenylation Landscapes Mediate Hematopoietic Stem Cell Activation and Regulate Glutamine Metabolism. Cell Stem Cell, 2020, 26, 722-738.e7.	5.2	32
17	Mild Attenuation of the Pulmonary Inflammatory Response in a Mouse Model of Hereditary Hemochromatosis Type 4. Frontiers in Physiology, 2020, 11, 589351.	1.3	0
18	2007 – DIFFERENTIAL ALTERNATIVE POLYADENYLATION LANDSCAPES MEDIATE HEMATOPOIETIC STEM CELL ACTIVATION AND REGULATE GLUTAMINE METABOLISM. Experimental Hematology, 2020, 88, S29-S30.	0.2	0

#	Article	IF	CITATIONS
19	ALTERNATIVE POLYADENYLATION REGULATES HEMATOPOIETIC STEM CELL METABOLISM. Experimental Hematology, 2019, 76, S86.	0.2	1
20	Radical sensing keeps noxious iron at bay. Nature Metabolism, 2019, 1, 501-502.	5.1	2
21	SLN124, a GalNAc-siRNA Conjugate Targeting TMPRSS6, Efficiently Prevents Iron Overload in Hereditary Haemochromatosis Type 1. HemaSphere, 2019, 3, e301.	1.2	18
22	Transferrin receptor 2 controls bone mass and pathological bone formation via BMP and Wnt signalling. Nature Metabolism, 2019, 1, 111-124.	5.1	59
23	Air–blood barrier thickening and alterations of alveolar epithelial type 2 cells in mouse lungs with disrupted hepcidin/ferroportin regulatory system. Histochemistry and Cell Biology, 2019, 151, 217-228.	0.8	5
24	Sensing of Liver Iron Content Requires Cell-Cell Communication between Hepatocytes and Liver Sinusoidal Endothelial Cells. Blood, 2019, 134, 432-432.	0.6	1
25	Hepcidin-Mediated Ferroportin Control in the Bone Marrow Is Dispensable. Blood, 2019, 134, 3531-3531.	0.6	0
26	Modulation of glutathione peroxidase activity by age-dependent carbonylation in glomeruli of diabetic mice. Journal of Diabetes and Its Complications, 2018, 32, 130-138.	1.2	11
27	Transferrin receptor 2 is a potential novel therapeutic target for \hat{l}^2 -thalassemia: evidence from a murine model. Blood, 2018, 132, 2286-2297.	0.6	28
28	Hematopoietic Stem Cells are Regulated by Alternative Polyadenylation. Experimental Hematology, 2018, 64, S41.	0.2	0
29	Dietary stearic acid regulates mitochondria in vivo in humans. Nature Communications, 2018, 9, 3129.	5.8	80
30	SLN124, a Galnac-siRNA Conjugate Targeting TMPRSS6, for the Treatment of Iron Overload and Ineffective Erythropoiesis Such As in Beta-Thalassemia. Blood, 2018, 132, 2340-2340.	0.6	9
31	Hepatocyte Iron Content Controls BMP6-Dependent Hepcidin Regulation. Blood, 2018, 132, 3626-3626.	0.6	0
32	Exploring the Mechanisms of Thalassemic Erythropoiesis Improvement Caused By Bone Marrow Tfr2 Deletion. Blood, 2018, 132, 3624-3624.	0.6	0
33	Cdk6 contributes to cytoskeletal stability in erythroid cells. Haematologica, 2017, 102, 995-1005.	1.7	24
34	Disruption of the Hepcidin/Ferroportin Regulatory System Causes Pulmonary Iron Overload and Restrictive Lung Disease. EBioMedicine, 2017, 20, 230-239.	2.7	45
35	Vitamin A-Retinoic Acid Signaling Regulates Hematopoietic Stem Cell Dormancy. Cell, 2017, 169, 807-823.e19.	13.5	339
36	Uncoupled iron homeostasis in type 2 diabetes mellitus. Journal of Molecular Medicine, 2017, 95, 1387-1398.	1.7	35

#	Article	IF	CITATIONS
37	Low-iron diet and chelation therapy rescue severe atherosclerosis associated with high circulating iron levels. Atherosclerosis, 2017, 263, e15-e16.	0.4	1
38	Transforming Growth Factor \hat{l}^21 (TGF- \hat{l}^21) Activates Hepcidin mRNA Expression in Hepatocytes. Journal of Biological Chemistry, 2016, 291, 13160-13174.	1.6	29
39	Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause. Cell, 2016, 164, 668-680.	13.5	209
40	Mice with hepcidinâ€resistant ferroportin accumulate iron in the retina. FASEB Journal, 2016, 30, 813-823.	0.2	32
41	Efficacy and safety of deferasirox in non-thalassemic patients with elevated ferritin levels after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplantation, 2016, 51, 89-95.	1.3	30
42	Low-Iron Diet and Chelation Therapy Rescue Severe Atherosclerosis Associated with High Circulating Iron Levels. Blood, 2016, 128, 199-199.	0.6	2
43	Transition out of HSC Dormancy By a Continuous Upregulation of Metabolism Is Controlled Via Dietary Vitamin A/ Retinoic Acid Signaling. Blood, 2016, 128, LBA-4-LBA-4.	0.6	1
44	Elevated hepcidin serum level in response to inflammatory and iron signals in exercising athletes is independent of moderate supplementation with vitamin C and E. Physiological Reports, 2015, 3, e12475.	0.7	19
45	A novel inflammatory pathway mediating rapid hepcidin-independent hypoferremia. Blood, 2015, 125, 2265-2275.	0.6	144
46	Increased hepcidin levels in high-altitude pulmonary edema. Journal of Applied Physiology, 2015, 118, 292-298.	1.2	13
47	High Circulating Iron Levels Are a Risk Factor for Cardiovascular Disease: Clinical Implications for Iron-Overload Conditions. Blood, 2015, 126, 1040-1040.	0.6	0
48	Reply. Hepatology, 2014, 59, 1648-1649.	3.6	0
49	Resistance of Ferroportin to Hepcidin Binding causes Exocrine Pancreatic Failure and Fatal Iron Overload. Cell Metabolism, 2014, 20, 359-367.	7.2	98
50	An Inflammatory Pathway Mediating Rapid Hepcidin-Independent Hypoferremia. Blood, 2014, 124, 214-214.	0.6	0
51	Administration of recombinant erythropoietin alone does not improve the phenotype in iron refractory iron deficiency anemia patients. Annals of Hematology, 2013, 92, 387-394.	0.8	17
52	Human L-ferritin deficiency is characterized by idiopathic generalized seizures and atypical restless leg syndrome. Journal of Experimental Medicine, 2013, 210, 1779-1791.	4.2	39
53	Identification and Characterization of New Molecular Partners for the Protein Arginine Methyltransferase 6 (PRMT6). PLoS ONE, 2013, 8, e53750.	1.1	9
54	In Vivo Disruption Of The Hepcidinâ-'Ferroportin Regulatory Circuitry Causes Fatal Systemic and Exocrine Pancreatic Iron Overload. Blood, 2013, 122, 175-175.	0.6	0

#	Article	IF	CITATIONS
55	Pegylated interferon- $\hat{l}\pm$ induced hypoferremia is associated with the immediate response to treatment in hepatitis C. Hepatology, 2012, 56, 492-500.	3.6	48
56	Growth differentiation factor 15 in patients with congenital dyserythropoietic anaemia (CDA) type II. Journal of Molecular Medicine, 2011, 89, 811-816.	1.7	42
57	The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice. Journal of Clinical Investigation, 2011, 121, 1386-1396.	3.9	221
58	A novel TMPRSS6 mutation that prevents protease auto-activation causes IRIDA. Biochemical Journal, 2010, 431, 363-371.	1.7	38
59	Bone morphogenetic protein (BMP)-responsive elements located in the proximal and distal hepcidin promoter are critical for its response to HJV/BMP/SMAD. Journal of Molecular Medicine, 2009, 87, 471-480.	1.7	139
60	SELDI-TOF MS detection of urinary hepcidin. Biochimie, 2009, 91, 1335-1338.	1.3	23
61	Iron Toxicity in Diseases of Aging: Alzheimer's Disease, Parkinson's Disease and Atherosclerosis. Journal of Alzheimer's Disease, 2009, 16, 879-895.	1.2	349
62	The second AT-hook of the architectural transcription factor HMGA2 is determinant for nuclear localization and function. Nucleic Acids Research, 2007, 35, 1751-1760.	6.5	46
63	Identification and developmental expression of Xenopus hmga2β. Biochemical and Biophysical Research Communications, 2006, 351, 392-397.	1.0	4
64	The AT-hook of the Chromatin Architectural Transcription Factor High Mobility Group A1a Is Arginine-methylated by Protein Arginine Methyltransferase 6. Journal of Biological Chemistry, 2006, 281, 3764-3772.	1.6	85
65	HMGA1 Inhibits the Function of p53 Family Members in Thyroid Cancer Cells. Cancer Research, 2006, 66, 2980-2989.	0.4	87
66	CD40 Stimulation Induces Pax5/BSAP and EBF Activation through a APE/Ref-1-dependent Redox Mechanism. Journal of Biological Chemistry, 2004, 279, 1777-1786.	1.6	41
67	Nuclear phosphoproteins HMGA and their relationship with chromatin structure and cancer. FEBS Letters, 2004, 574, 1-8.	1.3	206
68	Transcriptional Activation of the Cyclin A Gene by the Architectural Transcription Factor HMGA2. Molecular and Cellular Biology, 2003, 23, 9104-9116.	1.1	140
69	Hypoferremia Predicts Hospitalization and Oxygen Demand in COVID-19 Patients. SSRN Electronic Journal, 0, , .	0.4	3