Daniele Pezzoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5640801/publications.pdf

Version: 2024-02-01

29 papers	827 citations	471371 17 h-index	552653 26 g-index
30 all docs	30 docs citations	30 times ranked	1525 citing authors

#	Article	IF	CITATIONS
1	Cellularizing hydrogel-based scaffolds to repair bone tissue: How to create a physiologically relevant micro-environment?. Journal of Tissue Engineering, 2017, 8, 204173141771207.	2.3	90
2	Size matters for in vitro gene delivery: investigating the relationships among complexation protocol, transfection medium, size and sedimentation. Scientific Reports, 2017, 7, 44134.	1.6	88
3	Bioreducible Liposomes for Gene Delivery: From the Formulation to the Mechanism of Action. PLoS ONE, 2010, 5, e13430.	1.1	59
4	A Novel Antibacterial Modification Treatment of Titanium Capable to Improve Osseointegration. International Journal of Artificial Organs, 2012, 35, 864-875.	0.7	48
5	Fibronectin promotes elastin deposition, elasticity and mechanical strength in cellularised collagen-based scaffolds. Biomaterials, 2018, 180, 130-142.	5 . 7	47
6	We still have a Long Way to go to Effectively Deliver Genes!. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 82-91.	0.7	45
7	Non-viral gene delivery strategies for gene therapy: a "ménage à trois―among nucleic acids, materials, and the biological environment. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	43
8	Antibacterial Coatings Based on Chitosan for Pharmaceutical and Biomedical Applications. Current Pharmaceutical Design, 2018, 24, 866-885.	0.9	42
9	Chitosan-Graft-Branched Polyethylenimine Copolymers: Influence of Degree of Grafting on Transfection Behavior. PLoS ONE, 2012, 7, e34711.	1.1	40
10	Synthesis of Multifunctional PAMAM–Aminoglycoside Conjugates with Enhanced Transfection Efficiency. Bioconjugate Chemistry, 2013, 24, 1928-1936.	1.8	38
11	Lipid-Based Nanoparticles as Nonviral Gene Delivery Vectors. Methods in Molecular Biology, 2013, 1025, 269-279.	0.4	33
12	The yin of exofacial protein sulfhydryls and the yang of intracellular glutathione in in vitro transfection with SS14 bioreducible lipoplexes. Journal of Controlled Release, 2013, 165, 44-53.	4.8	28
13	A dimerizable cationic lipid with potential for gene delivery. Journal of Gene Medicine, 2008, 10, 637-645.	1.4	24
14	Biomimetic coating of crossâ€linked gelatin to improve mechanical and biological properties of electrospun PET: A promising approach for small caliber vascular graft applications. Journal of Biomedical Materials Research - Part A, 2017, 105, 2405-2415.	2.1	24
15	A Costâ€Effective Culture System for the In Vitro Assembly, Maturation, and Stimulation of Advanced Multilayered Multiculture Tubular Tissue Models. Biotechnology Journal, 2018, 13, 1700359.	1.8	20
16	Heparin-Modified Collagen Gels for Controlled Release of Pleiotrophin: Potential for Vascular Applications. Frontiers in Bioengineering and Biotechnology, 2019, 7, 74.	2.0	20
17	Combined effect of Laponite and polymer molecular weight on the cell-interactive properties of synthetic PEO-based hydrogels. Reactive and Functional Polymers, 2019, 136, 95-106.	2.0	19
18	Development of photo-crosslinkable collagen hydrogel building blocks for vascular tissue engineering applications: A superior alternative to methacrylated gelatin?. Materials Science and Engineering C, 2021, 130, 112460.	3.8	19

#	Article	IF	CITATIONS
19	Comparative chondrogenesis of human cells in a 3D integrated experimental–computational mechanobiology model. Biomechanics and Modeling in Mechanobiology, 2011, 10, 259-268.	1.4	18
20	A planar model of the vessel wall from cellularized-collagen scaffolds: focus on cell–matrix interactions in mono-, bi- and tri-culture models. Biomaterials Science, 2017, 5, 153-162.	2.6	18
21	The study of polyplex formation and stability by time-resolved fluorescence spectroscopy of SYBR Green I-stained DNA. Photochemical and Photobiological Sciences, 2014, 13, 1680-1689.	1.6	17
22	Increasing Cell Seeding Density Improves Elastin Expression and Mechanical Properties in Collagen Gel-Based Scaffolds Cellularized with Smooth Muscle Cells. Biotechnology Journal, 2019, 14, 1700768.	1.8	16
23	RGD-derivatized PEI-PEG copolymers: Influence of the degree of substitution on the targeting behavior. Journal of Drug Delivery Science and Technology, 2017, 37, 115-122.	1.4	13
24	Characterization and Investigation of Redox-Sensitive Liposomes for Gene Delivery. Methods in Molecular Biology, 2016, 1445, 217-233.	0.4	9
25	Hydrophobe-substituted bPEI derivatives: boosting transfection on primary vascular cells. Science China Materials, 2017, 60, 529-542.	3.5	6
26	Time-resolved fluorescence spectroscopic investigation of cationic polymer/DNA complex formation. , 2011, , .		0
27	Time-resolved fluorescence spectroscopic investigation of cationic polymer/DNA complex formation. , 2011, , .		О
28	Fluorescence lifetime spectroscopy: a new technique for the characterization of polyplexes., 2014,,.		0
29	Study of cationic polymer/DNA complex (polyplex) formation by time-resolved fluorescence spectroscopy., 2011,,.		О