Alfred Singer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5640704/publications.pdf

Version: 2024-02-01

		117571	1	82361	
52	5,545	34		51	
papers	citations	h-index		g-index	
55	55	55		6256	
33	33	33		0230	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nature Immunology, 2010, 11, 257-264.	7.0	1,811
2	Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nature Reviews Immunology, 2008, 8, 788-801.	10.6	380
3	Coreceptor Reversal in the Thymus. Immunity, 2000, 13, 59-71.	6.6	222
4	T cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequences. ELife, 2017, 6, .	2.8	175
5	Disorganization and restoration of thymic medullary epithelial cells in T cell receptor-negative scid mice: Evidence that receptor-bearing lymphocytes influence maturation of the thymic microenvironment. European Journal of Immunology, 1991, 21, 1657-1661.	1.6	172
6	Deletion of CD4 and CD8 Coreceptors Permits Generation of $\hat{l}\pm\hat{l}^2T$ Cells that Recognize Antigens Independently of the MHC. Immunity, 2007, 27, 735-750.	6.6	163
7	Clonal deletion and the fate of autoreactive thymocytes that survive negative selection. Nature Immunology, 2012, 13, 569-578.	7.0	159
8	New perspectives on a developmental dilemma: the kinetic signaling model and the importance of signal duration for the CD4/CD8 lineage decision. Current Opinion in Immunology, 2002, 14, 207-215.	2.4	141
9	Intrathymic signalling in immature CD4+ CD8+ thymocytes results in tyrosine phosphorylation of the T-cell receptor zeta chain. Nature, 1989, 341, 651-654.	13.7	137
10	Let-7 microRNAs target the lineage-specific transcription factor PLZF to regulate terminal NKT cell differentiation and effector function. Nature Immunology, 2015, 16, 517-524.	7.0	137
11	IL-7 signaling must be intermittent, not continuous, during CD8+ T cell homeostasis to promote cell survival instead of cell death. Nature Immunology, 2013, 14, 143-151.	7.0	117
12	A TCR mechanotransduction signaling loop induces negative selection in the thymus. Nature Immunology, 2018, 19, 1379-1390.	7.0	112
13	Analysis of T-cell subsets in rejection of Kb mutant skin allografts differing at class I MHC. Nature, 1986, 322, 829-831.	13.7	109
14	Lck Availability during Thymic Selection Determines the Recognition Specificity of the T Cell Repertoire. Cell, 2013, 154, 1326-1341.	13.5	99
15	\hat{l} ± \hat{l} 2 T Cell Receptors that Do Not Undergo Major Histocompatibility Complex-Specific Thymic Selection Possess Antibody-like Recognition Specificities. Immunity, 2012, 36, 79-91.	6.6	95
16	CD4â§,CD8 Coreceptors in Thymocyte Development, Selection, and Lineage Commitment: Analysis of the CD4â§,CD8 Lineage Decision. Advances in Immunology, 2004, 83, 91-131.	1.1	92
17	Positive selection of CD4+T cells by TCR ligation without aggregation even in the absence of MHC. Nature, 1994, 371, 67-70.	13.7	88
18	TCR Activation of ZAP70 Is Impaired in CD4+CD8+ Thymocytes as a Consequence of Intrathymic Interactions that Diminish Available p56lck. Immunity, 1996, 4, 495-504.	6.6	82

#	Article	IF	Citations
19	Engagement of the CD4 molecule influences cell surface expression of the T-cell receptor on thymocytes. Nature, 1988, 336, 76-79.	13.7	79
20	Conditional deletion of cytokine receptor chains reveals that IL-7 and IL-15 specify CD8 cytotoxic lineage fate in the thymus. Journal of Experimental Medicine, 2012, 209, 2263-2276.	4.2	76
21	MHC restriction is imposed on a diverse T cell receptor repertoire by CD4 and CD8 co-receptors during thymic selection. Trends in Immunology, 2012, 33, 437-441.	2.9	7 5
22	T cell receptor-negative thymocytes from SCID mice can be induced to enter the CD4/CD8 differentiation pathway. European Journal of Immunology, 1990, 20, 69-77.	1.6	73
23	Molecular constraints on CDR3 for thymic selection of MHC-restricted TCRs from a random pre-selection repertoire. Nature Communications, 2019, 10, 1019.	5.8	72
24	Recognition Requirements for the Activation, Differentiation and Function of T-Helper Cells Specific for Class I MHC Alloantigens. Immunological Reviews, 1987, 98, 143-170.	2.8	70
25	Novel post-translational regulation of TCR expression in CD4+CD8+ thymocytes influenced by CD4. Nature, 1990, 344, 247-251.	13.7	70
26	Distinct B Cell Subpopulations Differ in Their Genetic Requirements for Activation by T Helper Cells. Immunological Reviews, 1982, 64, 137-160.	2.8	60
27	Modulation of Coreceptor Transcription during Positive Selection Dictates Lineage Fate Independently of TCR/Coreceptor Specificity. Immunity, 2005, 23, 75-87.	6.6	58
28	The transcription factor ThPOK suppresses Runx3 and imposes CD4+ lineage fate by inducing the SOCS suppressors of cytokine signaling. Nature Immunology, 2014, 15, 638-645.	7.0	58
29	T-cell recognition of a chimaeric class II/class I MHC molecule and the role of L3T4. Nature, 1985, 317, 425-427.	13.7	57
30	TCR affinity for thymoproteasome-dependent positively selecting peptides conditions antigen responsiveness in CD8+ T cells. Nature Immunology, 2015, 16, 1069-1076.	7.0	57
31	Strength of Signaling by CD4 and CD8 Coreceptor Tails Determines the Number but Not the Lineage Direction of Positively Selected Thymocytes. Immunity, 2001, 14, 483-494.	6.6	47
32	T cell receptor stimulation impairs IL-7 receptor signaling by inducing expression of the microRNA <i>miR-17</i> to target Janus kinase 1. Science Signaling, 2014, 7, ra83.	1.6	37
33	Nonequivalent effects of PKC activation by PMA on murine CD4 and CD8 cellâ€surface expression. FASEB Journal, 1988, 2, 2801-2806.	0.2	36
34	Similar co-stimulation requirements of CD4+ and CD8+ primary T helper cells: role of IL-1 and IL-6 in inducing IL-2 secretion and subsequent proliferation. International Immunology, 1992, 4, 327-335.	1.8	36
35	Identification of lineage-specifying cytokines that signal all CD8+-cytotoxic-lineage-fate 'decisions' in the thymus. Nature Immunology, 2017, 18, 1218-1227.	7.0	31
36	Coreceptor Signal Strength Regulates Positive Selection but Does Not Determine CD4/CD8 Lineage Choice in a Physiologic In Vivo Model. Journal of Immunology, 2006, 177, 6613-6625.	0.4	30

#	Article	IF	CITATIONS
37	Inverse correlation between steadyâ€state RNA and cell surface T cell receptor levels. FASEB Journal, 1990, 4, 3131-3134.	0.2	27
38	Coreceptor gene imprinting governs thymocyte lineage fate. EMBO Journal, 2012, 31, 366-377.	3.5	24
39	E-protein–regulated expression of CXCR4 adheres preselection thymocytes to the thymic cortex. Journal of Experimental Medicine, 2019, 216, 1749-1761.	4.2	23
40	Reversal of the T cell immune system reveals the molecular basis for T cell lineage fate determination in the thymus. Nature Immunology, 2022, 23, 731-742.	7.0	20
41	Timing and duration of MHC I positive selection signals are adjusted in the thymus to prevent lineage errors. Nature Immunology, 2016, 17, 1415-1423.	7.0	19
42	Immature CD8 Single-Positive Thymocytes Are a Molecularly Distinct Subpopulation, Selectively Dependent on BRD4 for Their Differentiation. Cell Reports, 2018, 24, 117-129.	2.9	19
43	Basis of Treg development in the thymus. Cell Cycle, 2014, 13, 501-502.	1.3	18
44	Developmental regulation of ?? T cell antigen receptor assembly in immature CD4+CD8+ thymocytes. BioEssays, 1995, 17, 1049-1054.	1.2	16
45	Presence of CD4 and CD8 determinants on CD4â^'CD8â^' murine thymocytes: passive acquisition of CD8 accessory molecules. European Journal of Immunology, 1991, 21, 973-977.	1.6	14
46	Immature Thymocytes Undergoing Receptor Rearrangements Are Resistant to an Atm-Dependent Death Pathway Activated in Mature T Cells by Double-Stranded DNA Breaks. Journal of Experimental Medicine, 2000, 192, 891-898.	4.2	12
47	CD69 prevents PLZFhi innate precursors from prematurely exiting the thymus and aborting NKT2 cell differentiation. Nature Communications, 2018, 9, 3749.	5.8	10
48	Structure of MHC-Independent TCRs and Their Recognition of Native Antigen CD155. Journal of Immunology, 2020, 204, 3351-3359.	0.4	10
49	AIDS therapy by blocking CD4+ cells. Nature, 1986, 320, 113-113.	13.7	9
50	Major Histocompatibility Complex Restricted Self-Recognition by B Cells and T Cells in Responses to TNP-Ficoll. Immunological Reviews, 1983, 69, 25-50.	2.8	4
51	MHC-independent $\hat{l}\pm\hat{l}^2T$ cells: Lessons learned about thymic selection and MHC-restriction. Frontiers in Immunology, 0, 13, .	2.2	4
52	Novel MHC-Independent \hat{l} ± \hat{l} 2TCRs Specific for CD48, CD102, and CD155 Self-Proteins and Their Selection in the Thymus. Frontiers in Immunology, 2020, 11, 1216.	2.2	3