Vera Tomazella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5640547/publications.pdf

Version: 2024-02-01

1040056 996975 47 327 9 15 citations h-index g-index papers 47 47 47 204 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Lehmann type II inverse Weibull distribution in the presence of censored data. Communications in Statistics Part B: Simulation and Computation, 2022, 51, 7057-7073.	1.2	5
2	Reliability assessment of repairable systems with series-parallel structure subjected to hierarchical competing risks under minimal repair regime. Reliability Engineering and System Safety, 2022, 222, 108364.	8.9	1
3	Statistical modeling and reliability analysis of multiple repairable systems with dependent failure times under perfect repair. Reliability Engineering and System Safety, 2022, 222, 108375.	8.9	7
4	Bayesian analysis of the inverse generalized gamma distribution using objective priors. Journal of Statistical Computation and Simulation, 2021, 91, 786-816.	1,2	8
5	Inverse Gaussian process model with frailty term in reliability analysis. Quality and Reliability Engineering International, 2021, 37, 763-784.	2.3	7
6	Optimal burnâ€in policy based on a set of cutoff points using mixture inverse Gaussian degradation process and copulas. Applied Stochastic Models in Business and Industry, 2021, 37, 612-627.	1.5	3
7	Bayesian Reference Analysis for the Generalized Normal Linear Regression Model. Symmetry, 2021, 13, 856.	2.2	3
8	Gamma-Gompertz shared frailty model for analysis of the time of stay in an Anglo-Nubian goat herd. Small Ruminant Research, 2021, 199, 106368.	1.2	5
9	Cox-Gompertz model for analysis of the time of stay in an Anglo-Nubian goat herd. Semina:Ciencias Agrarias, 2021, 42, 2937-2958.	0.3	O
10	Weighted Lindley frailty model: estimation and application to lung cancer data. Lifetime Data Analysis, 2021, 27, 561-587.	0.9	1
11	Improved objective Bayesian estimator for a PLP model hierarchically represented subject to competing risks under minimal repair regime. PLoS ONE, 2021, 16, e0255944.	2.5	2
12	Nonproportional hazards model with a frailty term for modeling subgroups with evidence of longâ€term survivors: Application to a lung cancer dataset. Biometrical Journal, 2021, , .	1.0	0
13	Objective bayesian analysis for multiple repairable systems. PLoS ONE, 2021, 16, e0258581.	2.5	1
14	On mean-based bivariate Birnbaum-Saunders distributions: Properties, inference and application. Communications in Statistics - Theory and Methods, 2020, 49, 6032-6056.	1.0	4
15	Long-term frailty modeling using a non-proportional hazards model: Application with a melanoma dataset. Statistical Methods in Medical Research, 2020, 29, 2100-2118.	1.5	10
16	Objective Bayesian analysis for the Lomax distribution. Statistics and Probability Letters, 2020, 159, 108677.	0.7	10
17	Bayesian non-parametric frailty model for dependent competing risks in a repairable systems framework. Reliability Engineering and System Safety, 2020, 204, 107145.	8.9	15
18	A new cure rate model with flexible competing causes with applications to melanoma and transplantation data. Statistics in Medicine, 2020, 39, 3272-3284.	1.6	9

#	Article	lF	Citations
19	Incorporation of Frailties Into a Non-Proportional Hazard Regression Model and Its Diagnostics for Reliability Modeling of Downhole Safety Valves. IEEE Access, 2020, 8, 219757-219774.	4.2	4
20	Reference Bayesian analysis for the generalized lognormal distribution with application to survival data. Statistics and Its Interface, 2020, 13, 139-149.	0.3	3
21	Defective models induced by gamma frailty term for survival data with cured fraction. Journal of Applied Statistics, 2019, 46, 484-507.	1.3	16
22	Zero-adjusted reparameterized Birnbaum–Saunders regression model. Statistics and Probability Letters, 2019, 149, 142-145.	0.7	7
23	Zero-adjusted defective regression models for modeling lifetime data. Journal of Applied Statistics, 2019, 46, 2434-2459.	1.3	9
24	Defective regression models for cure rate modeling with intervalâ€eensored data. Biometrical Journal, 2019, 61, 841-859.	1.0	8
25	A Repairable System Subjected to Hierarchical Competing Risks: Modeling and Applications. IEEE Access, 2019, 7, 171707-171723.	4.2	7
26	Accelerated lifetime modelling with frailty in a non-homogeneous Poisson Process for analysis of recurrent events data. Quality Technology and Quantitative Management, 2018, 15, 209-229.	1.9	2
27	A survival model with Birnbaum–Saunders frailty for uncensored and censored cancer data. Brazilian Journal of Probability and Statistics, 2018, 32, .	0.4	21
28	Negative Binomial Kumaraswamy-G Cure Rate Regression Model. Journal of Risk and Financial Management, 2018, 11, 6.	2.3	4
29	Hierarchical Transmuted Log-Logistic Model: A Subjective Bayesian Analysis. Journal of Risk and Financial Management, 2018, 11, 13.	2.3	2
30	Incorporation of frailties into a cure rate regression model and its diagnostics and application to melanoma data. Statistics in Medicine, 2018, 37, 4421-4440.	1.6	44
31	GOMPERTZ REGRESSION MODEL WITH GAMMA FRAILTY: A STUDY ON THE APPLICATION IN LUNG CANCER. Revista Brasileira De Biometria, 2018, 36, 860-879.	0.1	1
32	New defective models based on the Kumaraswamy family of distributions with application to cancer data sets. Statistical Methods in Medical Research, 2017, 26, 1737-1755.	1.5	17
33	Frailty models power variance function with cure fraction and latent risk factors negative binomial. Communications in Statistics - Theory and Methods, 2017, 46, 9763-9776.	1.0	8
34	Birnbaumâ€"Saunders frailty regression models: Diagnostics and application to medical data. Biometrical Journal, 2017, 59, 291-314.	1.0	37
35	A new class of defective models based on the Marshall–Olkin family of distributions for cure rate modeling. Computational Statistics and Data Analysis, 2017, 107, 48-63.	1.2	19
36	Biparametric zero-modified power series distributions: Bayesian analysis under a reference prior approach. Communications in Statistics - Theory and Methods, 2017, 46, 10518-10536.	1.0	0

#	Article	IF	CITATIONS
37	Objective Bayesian Snalysis for the Complementary Exponential Geometric Model Applied to Cancer Data. International Journal of Statistics and Probability, 2017, 6, 122.	0.3	1
38	Bayesian Estimation of the Kumaraswamy InverseWeibull Distribution. Journal of Statistical Theory and Applications, 2017, 16, 248.	0.9	2
39	Two new defective distributions based on the Marshall–Olkin extension. Lifetime Data Analysis, 2016, 22, 216-240.	0.9	11
40	The generalized time-dependent logistic frailty model: An application to a population-based prospective study of incident cases of lung cancer diagnosed in Northern Ireland. Brazilian Journal of Probability and Statistics, 2015, 29, .	0.4	7
41	Estimation of parameters in Laplace distributions with interval censored data. Brazilian Journal of Probability and Statistics, 2015, 29, .	0.4	O
42	Bayesian Partition for Variable Selection in the Power Series Cure Rate Model. Springer Proceedings in Mathematics and Statistics, 2015, , 311-321.	0.2	0
43	Modeling categorical covariates for lifetime data in the presence of cure fraction by Bayesian partition structures. Journal of Applied Statistics, 2014, 41, 622-634.	1.3	4
44	Bayesian estimation of generalized exponential distribution under noninformative priors. AIP Conference Proceedings, 2012, , .	0.4	0
45	Objective Bayesian reference analysis for the Poisson process model in presence of recurrent events data. Test, 2011, 20, 204-221.	1.1	1
46	Does reference prior alleviate the incidental parameter problem?. Brazilian Journal of Probability and Statistics, 2010, 24, .	0.4	0
47	Weighted Lindley regression model with varying precision: estimation, modeling and its diagnostics. Communications in Statistics Part B: Simulation and Computation, 0, , 1-21.	1.2	1