Rong-hua Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5640170/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Psoriasis Susceptibility 1 Candidate 1 (<i>PSORS1C1</i>) Polymorphism is Associated with Autoimmune Thyroid Disease in a Chinese Han Population. Immunological Investigations, 2022, 51, 1222-1231.	1.0	4
2	High-throughput T cell receptor sequencing reveals differential immune repertoires in autoimmune thyroid diseases. Molecular and Cellular Endocrinology, 2022, 550, 111644.	1.6	1
3	Polymorphisms of ATG5 Gene Are Associated with Autoimmune Thyroid Diseases, Especially Thyroid Eye Disease. Journal of Immunology Research, 2022, 2022, 1-6.	0.9	2
4	METTL3 gene polymorphisms contribute to susceptibility to autoimmune thyroid disease. Endocrine, 2021, 72, 495-504.	1.1	11
5	Identifying and Validating Differentially Methylated Regions in Newly Diagnosed Patients with Graves' Disease. DNA and Cell Biology, 2021, 40, 482-490.	0.9	4
6	Systemic Proteomic Analysis Reveals Distinct Exosomal Protein Profiles in Rheumatoid Arthritis. Journal of Immunology Research, 2021, 2021, 1-11.	0.9	8
7	METTL3 Is Involved in the Development of Graves' Disease by Inducing SOCS mRNA m6A Modification. Frontiers in Endocrinology, 2021, 12, 666393.	1.5	7
8	Inclusion of ALKBH5 as a candidate gene for the susceptibility of autoimmune thyroid disease. Advances in Medical Sciences, 2021, 66, 351-358.	0.9	11
9	An Update Evolving View of Copy Number Variations in Autoimmune Diseases. Frontiers in Genetics, 2021, 12, 794348.	1.1	3
10	Proteomics Screening of Differentially Expressed Cytokines in Tears of Patients with Graves' Ophthalmopathy. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2020, 20, 87-95.	0.6	13
11	Aberrant Histone Methylation in Patients with Graves' Disease. International Journal of Endocrinology, 2019, 2019, 1-7.	0.6	8
12	The Impact of Obesity on Thyroid Autoimmunity and Dysfunction: A Systematic Review and Meta-Analysis. Frontiers in Immunology, 2019, 10, 2349.	2.2	118
13	Aberrant Expressions of Co-stimulatory and Co-inhibitory Molecules in Autoimmune Diseases. Frontiers in Immunology, 2019, 10, 261.	2.2	13
14	<i>IRF7</i> Gene Variations Confer Susceptibility to Autoimmune Thyroid Diseases and Graves' Ophthalmopathy. International Journal of Endocrinology, 2019, 2019, 1-7.	0.6	4
15	CEP128 is a crucial risk locus for autoimmune thyroid diseases. Molecular and Cellular Endocrinology, 2019, 480, 97-106.	1.6	14
16	Polymorphisms of IKZF3 Gene and Autoimmune Thyroid Diseases: Associated with Graves' Disease but Not with Hashimoto's Thyroiditis. Cellular Physiology and Biochemistry, 2018, 45, 1787-1796.	1.1	19
17	Associations of TNFRSF1A Polymorphisms with Autoimmune Thyroid Diseases: A Case-Control Study. Hormone and Metabolic Research, 2018, 50, 117-123.	0.7	2
18	Polymorphisms of FAM167A-BLK Region Confer Risk of Autoimmune Thyroid Disease. DNA and Cell Biology, 2018, 37, 932-940.	0.9	6

Rong-hua Song

#	Article	IF	CITATIONS
19	Sex Differences in the Associations of Obesity With Hypothyroidism and Thyroid Autoimmunity Among Chinese Adults. Frontiers in Physiology, 2018, 9, 1397.	1.3	28
20	Polymorphisms in Autophagy-Related Gene <i> IRGM</i> Are Associated with Susceptibility to Autoimmune Thyroid Diseases. BioMed Research International, 2018, 2018, 1-7.	0.9	18
21	Copy number variations exploration of multiple genes in Graves' disease. Medicine (United States), 2017, 96, e5866.	0.4	3
22	A case–control study of selenoprotein genes polymorphisms and autoimmune thyroid diseases in a Chinese population. BMC Medical Genetics, 2017, 18, 54.	2.1	10
23	Diabetes self-management education reduces risk of all-cause mortality in type 2 diabetes patients: a systematic review and meta-analysis. Endocrine, 2017, 55, 712-731.	1.1	155
24	Non-thyroidal illness syndrome in patients with cardiovascular diseases: A systematic review and meta-analysis. International Journal of Cardiology, 2017, 226, 1-10.	0.8	71
25	Proteomic analysis reveals aberrant expression of CALR and HSPA5 in thyroid tissues of Graves' disease. Clinical Biochemistry, 2017, 50, 40-45.	0.8	9
26	Polymorphisms in MIR499A and MIR125A gene are associated with autoimmune thyroid diseases. Molecular and Cellular Endocrinology, 2017, 440, 106-115.	1.6	26
27	Antibiotic Exposure in Early Life Increases Risk of Childhood Obesity: A Systematic Review and Meta-Analysis. Frontiers in Endocrinology, 2017, 8, 170.	1.5	67
28	The Emerging Role of Epigenetics in Autoimmune Thyroid Diseases. Frontiers in Immunology, 2017, 8, 396.	2.2	62
29	Variants of Interleukin-22 Gene Confer Predisposition to Autoimmune Thyroid Disease. International Journal of Endocrinology, 2017, 2017, 1-9.	0.6	12
30	Association between C1q gene polymorphisms and autoimmune thyroid diseases. Archives of Endocrinology and Metabolism, 2017, 61, 337-342.	0.3	5
31	TNFSF4 Gene Variations Are Related to Early-Onset Autoimmune Thyroid Diseases and Hypothyroidism of Hashimoto's Thyroiditis. International Journal of Molecular Sciences, 2016, 17, 1369.	1.8	12
32	Gene-gene and gene-sex epistatic interactions of <i>DNMT1</i> , <i>DNMT3A</i> and <i>DNMT3B</i> in autoimmune thyroid disease. Endocrine Journal, 2016, 63, 643-653.	0.7	18
33	Differential cytokine expression detected by protein microarray screening in peripheral blood of patients with refractory Graves' disease. Clinical Endocrinology, 2016, 84, 402-407.	1.2	12
34	Histone hypoacetylation and increased histone deacetylases in peripheral blood mononuclear cells from patients with Graves' disease. Molecular and Cellular Endocrinology, 2015, 414, 143-147.	1.6	28
35	Genome-wide DNA methylation analysis in Graves' disease. Genomics, 2015, 105, 204-210.	1.3	57
36	Polymorphism of IL37 gene as a protective factor for autoimmune thyroid disease. Journal of Molecular Endocrinology, 2015, 55, 209-218.	1.1	25

Rong-hua Song

#	Article	IF	CITATIONS
37	Aberrant Expression of miRNA and mRNAs in Lesioned Tissues of Graves' Disease. Cellular Physiology and Biochemistry, 2015, 35, 1934-1942.	1.1	30
38	Variants in IRAK1-MECP2 region confer susceptibility to autoimmune thyroid diseases. Molecular and Cellular Endocrinology, 2015, 399, 244-249.	1.6	25
39	Lack of association between polymorphisms in the UBASH3A gene and autoimmune thyroid disease: a case control study. Arquivos Brasileiros De Endocrinologia E Metabologia, 2014, 58, 640-645.	1.3	5
40	Polymorphisms of the TNFAIP3 region and Graves' disease. Autoimmunity, 2014, 47, 459-465.	1.2	22
41	Different levels of circulating Th22 cell and its related molecules in Graves' disease and Hashimoto's thyroiditis. International Journal of Clinical and Experimental Pathology, 2014, 7, 4024-31.	0.5	19
42	Association of single-nucleotide polymorphisms in the STAT3 gene with autoimmune thyroid disease in Chinese individuals. Functional and Integrative Genomics, 2013, 13, 455-461.	1.4	32
43	Association of interleukin-17A and -17F gene single-nucleotide polymorphisms with autoimmune thyroid diseases. Autoimmunity, 2012, 45, 533-539.	1.2	62