
Henry-Eric Spinnler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5639778/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient 3-hydroxypropionic acid production by Acetobacter sp. CIP 58.66 through a feeding strategy based on pH control. AMB Express, 2021, 11, 130.	1.4	1
2	Process engineering for microbial production of 3-hydroxypropionic acid. Biotechnology Advances, 2018, 36, 1207-1222.	6.0	59
3	Towards an extractive bioconversion of 3â€hydroxypropionic acid: study of inhibition phenomena. Journal of Chemical Technology and Biotechnology, 2017, 92, 2425-2432.	1.6	15
4	Effect of dairy matrices on the survival of Streptococcus thermophilus , Brevibacterium aurantiacum and Hafnia alvei during digestion. Food Research International, 2017, 100, 477-488.	2.9	11
5	Surface Mold–Ripened Cheeses. , 2017, , 911-928.		12
6	Wheat and Sugar Beet Coproducts for the Bioproduction of 3-Hydroxypropionic Acid by Lactobacillus reuteri DSM17938. Fermentation, 2017, 3, 32.	1.4	12
7	ACEI and antioxidant peptides release during ripening of Mexican Cotija hard cheese. Journal of Food Research, 2016, 5, 85.	0.1	23
8	Reactive extraction of 3-hydroxypropionic acid from model aqueous solutions and real bioconversion media. Comparison with its isomer 2-hydroxypropionic (lactic) acid. Journal of Chemical Technology and Biotechnology, 2016, 91, 2276-2285.	1.6	15
9	Reactive extraction of bio-based 3-hydroxypropionic acid assisted by hollow-fiber membrane contactor using TOA and Aliquat 336 in <i>n</i> decanol. Journal of Chemical Technology and Biotechnology, 2016, 91, 2705-2712.	1.6	24
10	Diversity of Lactobacillus reuteri Strains in Converting Glycerol into 3-Hydroxypropionic Acid. Applied Biochemistry and Biotechnology, 2015, 177, 923-939.	1.4	36
11	Relationships between the use of Embden Meyerhof pathway (EMP) or Phosphoketolase pathway (PKP) and lactate production capabilities of diverse Lactobacillus reuteri strains. Journal of Microbiology, 2015, 53, 702-710.	1.3	23
12	3-Hydroxypropionaldehyde (3-HPA) quantification by HPLC using a synthetic acrolein-free 3-hydroxypropionaldehyde system as analytical standard. RSC Advances, 2015, 5, 92619-92627.	1.7	11
13	Risk-based food safety and quality governance at the international law, EU, USA, Canada and France: Effective system for Lebanon as forAthe WTO accession. Food Control, 2014, 44, 267-282.	2.8	10
14	Debaryomyces hansenii, Proteus vulgaris, Psychrobacter sp. and Microbacterium foliorum are able to produce biogenic amines. Dairy Science and Technology, 2013, 93, 191-200.	2.2	13
15	S-methyl thioesters are produced from fatty acids and branched-chain amino acids by brevibacteria: focus on l-leucine catabolic pathway and identification of acyl–CoA intermediates. Applied Microbiology and Biotechnology, 2012, 93, 1673-1683.	1.7	21
16	Recent Advances in Volatile Sulfur Compounds in Cheese: Thiols and Thioesters. ACS Symposium Series, 2011, , 119-135.	0.5	0
17	Critical effect of oxygen on aroma compound production by Proteus vulgaris. Food Chemistry, 2011, 126, 134-139.	4.2	9
18	The type of cheese curds determined the colouring capacity of <i>Brevibacterium</i> and <i>Arthrobacter species</i> . Journal of Dairy Research, 2010, 77, 287-294.	0.7	15

#	Article	IF	CITATIONS
19	Luminescent conjugates between dinuclear rhenium(i) complexes and peptide nucleic acids (PNA) for cell imaging and DNA targeting. Chemical Communications, 2010, 46, 6255.	2.2	83
20	Growth and aroma contribution of Microbacterium foliorum, Proteus vulgaris and Psychrobacter sp. during ripening in a cheese model medium. Applied Microbiology and Biotechnology, 2009, 82, 169-177.	1.7	38
21	Effects of Proteus vulgaris growth on the establishment of a cheese microbial community and on the production of volatile aroma compounds in a model cheese. Journal of Applied Microbiology, 2009, 107, 1404-1413.	1.4	30
22	Identification of a Powerful Aroma Compound in Munster and Camembert Cheeses: Ethyl 3-Mercaptopropionate. Journal of Agricultural and Food Chemistry, 2008, 56, 4674-4680.	2.4	32
23	Metabolism of phenylalanine and biosynthesis of styrene in Penicillium camemberti. Journal of Dairy Research, 2007, 74, 180-185.	0.7	26
24	Controlled production of camembert-type cheeses: Part III role of the ripening microflora on free fatty acid concentrations. Journal of Dairy Research, 2007, 74, 218-225.	0.7	33
25	Comparison of volatile sulphur compound production by cheese-ripening yeasts from methionine and methionine–cysteine mixtures. Applied Microbiology and Biotechnology, 2007, 75, 1447-1454.	1.7	52
26	Production of volatile aroma compounds by bacterial strains isolated from different surface-ripened French cheeses. Applied Microbiology and Biotechnology, 2007, 76, 1161-1171.	1.7	88
27	White-mould cheese. , 2007, , 268-283.		2
28	Growth and colour development of some surface ripening bacteria with Debaryomyces hansenii on aseptic cheese curd. Journal of Dairy Research, 2006, 73, 441-448.	0.7	26
29	Genetic transformation of Brevibacterium linens strains producing high amounts of diverse sulphur compounds. Journal of Dairy Research, 2005, 72, 179-187.	0.7	13
30	Importance of curd-neutralising yeasts on the aromatic potential of Brevibacterium linens during cheese ripening. International Dairy Journal, 2005, 15, 883-891.	1.5	25
31	Controlled production of Camembert-type cheeses. Part I: Microbiological and physicochemical evolutions. Journal of Dairy Research, 2004, 71, 346-354.	0.7	88
32	Assessment of the rind microbial diversity in a farmhouse-produced vs a pasteurized industrially produced soft red-smear cheese using both cultivation and rDNA-based methods. Journal of Applied Microbiology, 2004, 97, 546-556.	1.4	94
33	Surface mould-ripened cheeses. Cheese: Chemistry, Physics and Microbiology, 2004, 2, 157-174.	0.2	23
34	Methylthioacetaldehyde, a possible intermediate metabolite for the production of volatile sulphur compounds from -methionine by Lactococcus lactis. FEMS Microbiology Letters, 2004, 236, 85-90.	0.7	25
35	Controlled production of Camembert-type cheeses. Part II. Changes in the concentration of the more volatile compounds. Journal of Dairy Research, 2004, 71, 355-366.	0.7	24
36	Suprathreshold intensity and odour quality of sulphides and thioesters. Food Quality and Preference, 2004, 15, 247-257.	2.3	23

#	Article	IF	CITATIONS
37	Catabolism of volatile sulfur compounds precursors by Brevibacterium linens and Geotrichum candidum, two microorganisms of the cheese ecosystem. Journal of Biotechnology, 2003, 105, 245-253.	1.9	35
38	Production of volatile compounds by cheese-ripening yeasts: requirement for a methanethiol donor for S -methyl thioacetate synthesis by Kluyveromyces lactis. Applied Microbiology and Biotechnology, 2002, 58, 503-510.	1.7	85
39	Aroma Compound Production in Cheese Curd by Coculturing with Selected Yeast and Bacteria. Journal of Dairy Science, 2001, 84, 2125-2135.	1.4	68
40	Sulfur compound production by Geotrichum candidum from ?-methionine: importance of the transamination step. FEMS Microbiology Letters, 2001, 205, 247-252.	0.7	3
41	Production of sulfur compounds by several yeasts of technological interest for cheese ripening. International Dairy Journal, 2001, 11, 245-252.	1.5	93
42	L-methionine degradation potentialities of cheese-ripening microorganisms. Journal of Dairy Research, 2001, 68, 663-674.	0.7	69
43	Sulfur compound production by Geotrichum candidum from l-methionine: importance of the transamination step. FEMS Microbiology Letters, 2001, 205, 247-252.	0.7	52
44	Flavour sulphides are produced from methionine by two different pathways by Geotrichum candidum. Journal of Dairy Research, 2000, 67, 371-380.	0.7	39
45	Diversity of I -Methionine Catabolism Pathways in Cheese-Ripening Bacteria. Applied and Environmental Microbiology, 2000, 66, 5514-5517.	1.4	109
46	Behavior of Brevibacterium linens and Debaryomyces hansenii as Ripening Flora in Controlled Production of Smear Soft Cheese from Reconstituted Milk: Growth and Substrate Consumption. Journal of Dairy Science, 2000, 83, 1665-1673.	1.4	53
47	Comparison of odour sensory profiles performed by two independent trained panels following the same descriptive analysis procedures. Food Quality and Preference, 2000, 11, 487-495.	2.3	25
48	In Situ Detoxification of the Fermentation Medium during $\hat{1}^3$ -Decalactone Production with the Yeast Sporidiobolus salmonicolor. Biotechnology Progress, 1999, 15, 135-139.	1.3	36
49	Regulation of the synthesis of aryl metabolites by phospholipid sources in the white-rot fungus Bjerkandera adusta. Archives of Microbiology, 1999, 171, 151-158.	1.0	11
50	Combinatorial Approach to Flavor Analysis. 2. Olfactory Investigation of a Library ofS-Methyl Thioesters and Sensory Evaluation of Selected Components. Journal of Agricultural and Food Chemistry, 1999, 47, 3274-3279.	2.4	55
51	Combinatorial Approach to Flavor Analysis. 1. Preparation and Characterization of aS-Methyl Thioester Library. Journal of Agricultural and Food Chemistry, 1999, 47, 3269-3273.	2.4	20
52	Growth of Debaryomyces hansenii on a bacterial surface-ripened soft cheese. Journal of Dairy Research, 1999, 66, 271-281.	0.7	52
53	Production of γ-decalactone and 4-hydroxy-decanoic acid in the genus Sporidiobolus. Journal of Bioscience and Bioengineering, 1998, 86, 169-173.	0.9	30
54	Fatty acid accumulation in the yeast Sporidiobolus salmonicolor during batch production of Î ³ -decalactone. FEMS Microbiology Letters, 1997, 149, 17-24.	0.7	24

HENRY-ERIC SPINNLER

#	Article	IF	CITATIONS
55	Chirality of the ?-lactones produced bySporidiobolus salmonicolor grown in two different media. , 1997, 9, 667-671.		15
56	Effect of Fat Content on Odor Intensity of Three Aroma Compounds in Model Emulsions:Â δ-Decalactone, Diacetyl, and Butyric Acid. Journal of Agricultural and Food Chemistry, 1996, 44, 2341-2348.	2.4	61
57	Review: Compounds Involved in the Flavor of Surface Mold-Ripened Cheeses: Origins and Properties. Journal of Dairy Science, 1996, 79, 169-184.	1.4	521
58	Analysis of metabolic pathways by the growth of cells in the presence of organic solvents Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 3373-3376.	3.3	25
59	Production, Identification, and Toxicity of (gamma)-Decalactone and 4-Hydroxydecanoic Acid from Sporidiobolus spp. Applied and Environmental Microbiology, 1996, 62, 2826-2831.	1.4	56
60	Production of halogenated compounds byBjerkandera adusta. Applied Microbiology and Biotechnology, 1994, 42, 212-221.	1.7	29
61	Dialysis of flavour compounds: Yields of extraction on model solution. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1993, 197, 419-423.	0.7	3
62	Effect of culture parameters on the production of styrene (vinyl benzene) and 1-octene-3-ol by Penicillium caseicolum. Journal of Dairy Research, 1992, 59, 533-541.	0.7	34
63	Bioconversion of amino acids into flavouring alcohols and esters by Erwinia carotovora subsp. atroseptica. Applied Microbiology and Biotechnology, 1991, 35, 264.	1.7	13
64	Influence of culture conditions on production of flavour compounds by 29 ligninolytic Basidiomycetes. Mycological Research, 1990, 94, 494-504.	2.5	75
65	Automatic method to quantify starter activity based on pH measurement. Journal of Dairy Research, 1989, 56, 755-764.	0.7	83
66	Volatile compounds produced by the ligninolytic fungus Phlebia radiata Fr. (Basidiomycetes) and influence of the strain specificity on the odorous profile. Journal of Biotechnology, 1989, 10, 303-308.	1.9	30
67	Pectinolytic activity ofClostridium thermocellum: Its use for anaerobic fermentation of sugar beet pulp. Applied Microbiology and Biotechnology, 1986, 23, 434-437.	1.7	21
68	Analysis of amino acid requirements ofClostridium thermocellum. Applied Microbiology and Biotechnology, 1986, 23, 496-498.	1.7	6
69	Antioxidant and angiotensin-converting enzyme inhibitory activity in fresh goat cheese prepared without starter culture: a preliminary study. CYTA - Journal of Food, 0, , 1-9.	0.9	5