Hong-Fu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5639761/publications.pdf

Version: 2024-02-01

186265 302126 2,677 189 28 39 citations h-index g-index papers 191 191 191 779 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Simplified optical quantum-information processing via weak cross-Kerr nonlinearities. Physical Review A, 2011, 83, .	2.5	86
2	Optically controlled phase gate and teleportation of a controlled-not gate for spin qubits in a quantum-dot–microcavity coupled system. Physical Review A, 2013, 87, .	2.5	78
3	Linear optical generation of multipartite entanglement with conventional photon detectors. Physical Review A, 2009, 79, .	2.5	64
4	Distinguishing photon blockade in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT -symmetric optomechanical system. Physical Review A, 2019, 99, .</mml:mi </mml:math 	2.5	57
5	Simplified scheme for entanglement preparation with Rydberg pumping via dissipation. Physical Review A, 2015, 92, .	2.5	51
6	Ground-state cooling of rotating mirror in double-Laguerre-Gaussian-cavity with atomic ensemble. Optics Express, 2018, 26, 6143.	3 . 4	49
7	Optomechanical cooling beyond the quantum backaction limit with frequency modulation. Physical Review A, 2018, 98, .	2.5	47
8	Linear-optics-based entanglement concentration of unknown partially entangled three-photon W states. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 2159.	2.1	46
9	Steady-state mechanical squeezing in a double-cavity optomechanical system. Scientific Reports, 2016, 6, 38559.	3.3	46
10	Magnon Blockade in a PTâ€Symmetric‣ike Cavity Magnomechanical System. Annalen Der Physik, 2020, 532, 2000028.	2.4	45
11	Spontaneous <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> -symmetry breaking in non-Hermitian coupled-cavity array. Physical Review A, 2017, 96, .	2.5	44
12	Photon blockade in a double-cavity optomechanical system with nonreciprocal coupling. New Journal of Physics, 2020, 22, 093006.	2.9	44
13	Generation and transfer of squeezed states in a cavity magnomechanical system by two-tone microwave fields. Optics Express, 2021, 29, 11773.	3.4	42
14	Robust entanglement between a movable mirror and atomic ensemble and entanglement transfer in coupled optomechanical system. Scientific Reports, 2016, 6, 33404.	3.3	41
15	Quantum state engineering with nitrogen-vacancy centers coupled to low-Q microresonator. Optics Express, 2013, 21, 5988.	3.4	40
16	Scheme for entanglement generation in an atom-cavity system via dissipation. Physical Review A, 2014, 90, .	2.5	40
17	Deterministic CNOT gate and entanglement swapping for photonic qubits using a quantum-dot spin in a double-sided optical microcavity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 2870-2876.	2.1	39
18	Engineering the topological state transfer and topological beam splitter in an even-sized Su-Schrieffer-Heeger chain. Physical Review A, 2020, 102, .	2.5	39

#	Article	IF	Citations
19	Classical-to-quantum transition behavior between two oscillators separated in space under the action of optomechanical interaction. Scientific Reports, 2017, 7, 2545.	3.3	36
20	Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity. Scientific Reports, 2016, 6, 24421.	3.3	35
21	Preparation of three-dimensional entanglement for distant atoms in coupled cavities via atomic spontaneous emission and cavity decay. Scientific Reports, 2014, 4, 7566.	3.3	34
22	Entanglement concentration of partially entangled three-photon W states with weak cross-Kerr nonlinearity. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 630.	2.1	33
23	One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities. Optics Letters, 2014, 39, 1489.	3.3	33
24	Counterfactual quantum-information transfer without transmitting any physical particles. Scientific Reports, 2015, 5, 8416.	3.3	33
25	Enhanced photon blockade in an optomechanical system with parametric amplification. Optics Letters, 2020, 45, 2604.	3.3	32
26	Simple implementation of discrete quantum Fourier transform via cavity quantum electrodynamics. New Journal of Physics, 2011, 13, 013021.	2.9	31
27	Engineering of strong mechanical squeezing via the joint effect between Duffing nonlinearity and parametric pump driving. Photonics Research, 2019, 7, 1229.	7.0	31
28	Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities. Scientific Reports, 2015, 5, 11321.	3.3	30
29	Qubit-assisted squeezing of mirror motion in a dissipative cavity optomechanical system. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	29
30	Ground-state cooling of mechanical oscillator via quadratic optomechanical coupling with two coupled optical cavities. Optics Express, 2019, 27, 22855.	3.4	28
31	Modulationâ€Based Atomâ€Mirror Entanglement and Mechanical Squeezing in an Unresolvedâ€Sideband Optomechanical System. Annalen Der Physik, 2019, 531, 1800271.	2.4	28
32	Enhanced photon blockade via driving a trapped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">Î></mml:mi></mml:math> -type atom in a hybrid optomechanical system. Physical Review A, 2020, 102, .	2.5	28
33	Environment-assisted entanglement restoration and improvement of the fidelity for quantum teleportation. Quantum Information Processing, 2015, 14, 4147-4162.	2.2	26
34	Ground state cooling of magnomechanical resonator in \$\${cal P}{cal T}\$\$-symmetric cavity magnomechanical system at room temperature. Frontiers of Physics, 2020, 15, 1.	5.0	26
35	Improving the security of multiparty quantum secret splitting and quantum state sharing. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 358, 11-14.	2.1	25
36	Counterfactual entanglement distribution without transmitting any particles. Optics Express, 2014, 22, 8970.	3.4	25

3

#	Article	IF	CITATIONS
37	Strong mechanical squeezing in a standard optomechanical system by pump modulation. Physical Review A, 2020, 101, .	2.5	24
38	Controllable photonic and phononic topological state transfers in a small optomechanical lattice. Optics Letters, 2020, 45, 2018.	3.3	24
39	Local conversion of four Einstein-Podolsky-Rosen photon pairs into four-photon polarization-entangled decoherence-free states with non-photon-number-resolving detectors. Optics Express, 2011, 19, 25433.	3.4	23
40	Deterministic conversion of a four-photon GHZ state to a W state via homodyne measurement. Optics Express, 2016, 24, 15319.	3.4	23
41	Scheme for entanglement concentration of unknown partially entangled three-atom W states in cavity QED. Quantum Information Processing, 2012, 11, 431-441.	2.2	22
42	Efficient three-step entanglement concentration for an arbitrary four-photon cluster state. Chinese Physics B, 2013, 22, 030305.	1.4	22
43	Mechanical squeezing beyond resolved sideband and weak-coupling limits with frequency modulation. Physical Review A, 2019, 100, .	2.5	22
44	Quantum entanglement and one-way steering in a cavity magnomechanical system via a squeezed vacuum field. Optics Express, 2022, 30, 10969.	3.4	22
45	Quantum information processing in decoherence-free subspace with nitrogen-vacancy centers coupled to a whispering-gallery mode microresonator. Optics Communications, 2014, 313, 180-185.	2.1	21
46	Normalâ€Mode Splitting and Optomechanically Induced Absorption, Amplification, and Transparency in a Hybrid Optomechanical System. Annalen Der Physik, 2018, 530, 1800228.	2.4	21
47	Topological beam splitter via defect-induced edge channel in the Rice-Mele model. Physical Review B, 2021, 103, .	3.2	21
48	Effective scheme for \$\$W\$\$ W -state fusion with weak cross-Kerr nonlinearities. Quantum Information Processing, 2015, 14, 1919-1932.	2.2	20
49	Dissipative preparation of three-atom entanglement state via quantum feedback control. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 1873.	2.1	20
50	Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system. Quantum Information Processing, 2016, 15, 1485-1498.	2.2	20
51	Implementing Quantum Discrete Fourier Transform by Using Cavity Quantum Electrodynamics. Journal of the Korean Physical Society, 2008, 53, 1787-1790.	0.7	20
52	Effective W-state fusion strategies for electronic and photonic qubits via the quantum-dot-microcavity coupled system. Scientific Reports, 2015, 5, 12790.	3.3	19
53	Schemes for the generation of multipartite entanglement of remote atoms trapped in separate optical cavities. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 175506.	1.5	17
54	Distributed CNOT gate via quantum Zeno dynamics. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 2440.	2.1	17

#	Article	IF	Citations
55	Counterfactual quantum cloning without transmitting any physical particles. Physical Review A, 2017, 96, .	2.5	17
56	Simulating Z_2 topological insulators via a one-dimensional cavity optomechanical cells array. Optics Express, 2017, 25, 17948.	3.4	17
57	Simulation and detection of the topological properties of a modulated Rice-Mele model in a one-dimensional circuit-QED lattice. Science China: Physics, Mechanics and Astronomy, 2018, $61, 1$.	5.1	17
58	One-step implementation of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1</mml:mn><mml:mo>â†'</mml:mo><mml:mn>3</mml:mn><td>mrow2₂58/mr</td><td>nl:msth>orbit</td></mml:mrow></mml:math>	mrow 2 ₂58/mr	nl:m s th>orbit
59	Fast and effective implementation of discrete quantum Fourier transform via virtual-photon-induced process in separate cavities. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 1078.	2.1	16
60	Band structure and the exceptional ring in a two-dimensional superconducting circuit lattice. Physical Review A, 2020, 102, .	2.5	16
61	Simple schemes for universal quantum gates with nitrogen-vacancy centers in diamond. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 1821.	2.1	15
62	Entanglement dynamics of three atoms under quantum-jump-based feedback control. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 475.	2.1	15
63	Bosonic Kitaev phase in a frequency-modulated optomechanical array. Physical Review A, 2019, 100, .	2.5	15
64	Topological router induced via long-range hopping in a Su-Schrieffer-Heeger chain. Physical Review Research, 2021, 3, .	3.6	15
65	Counterfactual distributed controlled-phase gate for quantum-dot spin qubits in double-sided optical microcavities. Physical Review A, 2014, 90, .	2.5	14
66	Effective W-state fusion strategies in nitrogen-vacancy centers via coupling to microtoroidal resonators. Optics Express, 2017, 25, 17701.	3.4	14
67	Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	14
68	Unconventional Phonon Blockade in a Tavis–Cummings Coupled Optomechanical System. Annalen Der Physik, 2020, 532, 2000299.	2.4	14
69	An economic and feasible scheme to generate the four-photon entangled state via weak cross-Kerr nonlinearity. Optics Communications, 2013, 293, 172-176.	2.1	13
70	Physical optimization of quantum error correction circuits with spatially separated quantum dot spins. Optics Express, 2013, 21, 12484.	3.4	13
71	Preparation of entanglement between atoms in spatially separated cavities via fiber loss. European Physical Journal D, 2015, 69, 1.	1.3	13
72	Controllable photonic and phononic edge localization via optomechanically induced Kitaev phase. Optics Express, 2018, 26, 16250.	3.4	13

#	Article	IF	Citations
73	Controllable photon-phonon conversion via the topologically protected edge channel in an optomechanical lattice. Physical Review A, 2021, 103, .	2.5	13
74	Localized photonic states and dynamic process in nonreciprocal coupled Su-Schrieffer-Heeger chain. Optics Express, 2020, 28, 37026.	3.4	13
75	Protocol and quantum circuit for implementing the N-bit discrete quantum Fourier transform in cavity QED. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 065503.	1.5	12
76	Efficient shortcuts to adiabatic passage for three-dimensional entanglement generation via transitionless quantum driving. Scientific Reports, 2016, 6, 30929.	3.3	12
77	Optical nonreciprocal response and conversion in a Tavisâ€Cummings coupling optomechanical system. Quantum Engineering, 2020, 2, e39.	2.5	12
78	Topological phase induced by distinguishing parameter regimes in a cavity optomechanical system with multiple mechanical resonators. Physical Review A, 2020, 101, .	2.5	12
79	Topological Phase Transition and Eigenstates Localization in a Generalized Nonâ€Hermitian Su–Schrieffer–Heeger Model. Annalen Der Physik, 2021, 533, .	2.4	12
80	Generation of two-atom Knill–Laflamme–Milburn states with cavity quantum electrodynamics. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 1584.	2.1	11
81	Generating a four-photon polarization-entangled cluster state with homodyne measurement via cross-Kerr nonlinearity. Chinese Physics B, 2012, 21, 044205.	1.4	11
82	Direct conversion of a three-atom W state to a Greenberger–Horne–Zeilinger state in spatially separated cavities. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 065501.	1.5	11
83	Robust Interface-State Laser in Non-Hermitian Microresonator Arrays. Physical Review Applied, 2020, 13, .	3.8	11
84	Defect-induced controllable quantum state transfer via a topologically protected channel in a flux qubit chain. Physical Review A, 2020, 102, .	2.5	11
85	Dissipation-induced topological phase transition and periodic-driving-induced photonic topological state transfer in a small optomechanical lattice. Frontiers of Physics, 2021, 16, 1.	5.0	11
86	Generation and Enhancement of Mechanical Squeezing in a Hybrid Cavity Magnomechanical System. Annalen Der Physik, 2022, 534, .	2.4	11
87	Scheme for Realizing Deterministic Entanglement Concentration with Atoms Via Cavity QED. International Journal of Theoretical Physics, 2009, 48, 1678-1687.	1.2	10
88	Complete Bell-state and Greenberger–Horne–Zeilinger-state nondestructive detection based on simplified symmetry analyzer. Optics Communications, 2012, 285, 4134-4139.	2.1	10
89	Complete N-photon Greenberger–Horne–Zeilinger-state analyzer and its applications to quantum communication. Optics Communications, 2012, 285, 1571-1575.	2.1	10
90	Direct measurement of nonlocal entanglement of two-qubit spin quantum states. Scientific Reports, 2016, 6, 19482.	3.3	10

#	Article	IF	Citations
91	Dissipative preparation of distributed steady entanglement: an approach of unilateral qubit driving. Optics Express, 2017, 25, 88.	3.4	10
92	Temperature-resistant generation of robust entanglement with blue-detuning driving and mechanical gain. Optics Express, 2019, 27, 29581.	3.4	10
93	Quantum information splitting of an arbitrary three-qubit state via the cavity input–output process. Optics Communications, 2012, 285, 4616-4620.	2.1	9
94	Restoration of three-qubit entanglements and protection of tripartite quantum state sharing over noisy channels via environment-assisted measurement and reversal weak measurement. Quantum Information Processing, 2017, 16, 1.	2.2	9
95	Frequencyâ€Modulationâ€Enhanced Groundâ€State Cooling of Coupled Mechanical Resonators. Annalen Der Physik, 2019, 531, 1900193.	2.4	9
96	Double-mechanical-oscillator cooling by breaking the restrictions of quantum backaction and frequency ratio via dynamical modulation. Physical Review A, 2021, 103, .	2.5	9
97	Generation of Strong Mechanical–Mechanical Entanglement by Pump Modulation. Advanced Quantum Technologies, 2021, 4, 2000149.	3.9	9
98	Dissipative bosonic squeezing via frequency modulation and its application in optomechanics. Optics Express, 2020, 28, 28942.	3.4	9
99	Efficient quantum circuit for implementing discrete quantum Fourier transform in solid-state qubits. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 115502.	1.5	8
100	Atomic quantum information processing in low-Q cavity in the intermediate coupling region. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 2827.	2.1	8
101	Efficient Entanglement Concentration Schemes for Separated Nitrogen-Vacancy Centers Coupled to Low-Q Microresonators. International Journal of Theoretical Physics, 2014, 53, 80-90.	1.2	8
102	Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers. Annals of Physics, 2015, 360, 228-236.	2.8	8
103	Topological Phase Transition and Topological Quantum State Transfer in Periodically Modulated Circuitâ€QED Lattice. Annalen Der Physik, 2021, 533, 2100120.	2.4	8
104	Real-potential-driven anti- PT -symmetry breaking in non-Hermitian Su–Schrieffer–Heeger model. New Journal of Physics, 2021, 23, 073043.	2.9	8
105	Implementation of Grover Quantum Search via Cavity Quantum Electrodynamics. Journal of the Korean Physical Society, 2008, 53, 3144-3150.	0.7	8
106	Quantum superdense coding based on hyperentanglement. Chinese Physics B, 2012, 21, 080303.	1.4	7
107	Scheme for realizing the entanglement concentration of unknown partially entangled three-photonWstates assisted by a quantum dot-microcavity coupled system. Laser Physics Letters, $2014, 11, 115202$.	1.4	7
108	Parity-gate-based quantum information processing in decoherence-free subspace with nitrogen-vacancy centers. Optics Communications, 2015, 352, 140-147.	2.1	7

#	Article	IF	CITATIONS
109	Simulating and studying the topological properties of generalized commensurate Aubry–André–Harper model with microresonator array. Laser Physics Letters, 2018, 15, 015211.	1.4	7
110	Optomechanically induced transparency, amplification, and fast–slow light transitions in an optomechanical system with multiple mechanical driving phases. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 888.	2.1	7
111	Generation of Multi-electron Entanglement with Quantum-Dot Spins in Double-Sided Optical Microcavity Systems. International Journal of Theoretical Physics, 2013, 52, 3892-3901.	1.2	6
112	Deterministic quantum logic gates and quantum cloning based on quantum dot-cavity coupled system. Optics Communications, 2013, 303, 56-61.	2.1	6
113	Generation of steady entanglement via unilateral qubit driving in bad cavities. Scientific Reports, 2017, 7, 17648.	3.3	6
114	Heralded entanglement concentration of nonlocal photons assisted by doublesided optical microcavities. Physica Scripta, 2019, 94, 095103.	2.5	6
115	Manipulation of nanomechanical resonator via shaking optical frequency. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 045502.	1.5	6
116	Topological Phase Transition and Phase Diagrams in a Twoâ€Leg Kitaev Ladder System. Annalen Der Physik, 2020, 532, 1900479.	2.4	6
117	Quantum transport in a one-dimensional quasicrystal with mobility edges. Physical Review A, 2022, 105,	2.5	6
118	Spin-based scheme for implementing an N-qubit tunable controlled phase gate in quantum dots by interference of polarized photons. Laser Physics, 2014, 24, 045204.	1.2	5
119	Direct entanglement measurement of Werner state with cavity-assisted spin–photon interaction system. Quantum Information Processing, 2019, 18, 1.	2.2	5
120	Optomechanically induced Faraday and splitting effects in a double-cavity optomechanical system. Physical Review A, 2021, 104, .	2.5	5
121	Quantum walks in periodically kicked circuit QED lattice. Optics Express, 2020, 28, 13532.	3.4	5
122	Mechanical squeezing induced by Duffing nonlinearity and two driving tones in an optomechanical system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 424, 127824.	2.1	5
123	Implementing Deutsch-Jozsa Algorithm withÂSuperconducting Quantum Interference Devices inÂCavity QED. International Journal of Theoretical Physics, 2009, 48, 2384-2389.	1.2	4
124	Linear optical implementation of an ancilla-free quantum SWAP gate. Physica Scripta, 2010, 81, 015011.	2.5	4
125	Scheme for entanglement concentration of unknown atomic entangled states by interference of polarized photons. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 235501.	1.5	4
126	Two-qubit and three-qubit controlled gates with cross-Kerr nonlinearity. Chinese Physics B, 2013, 22, 030313.	1.4	4

#	Article	IF	CITATIONS
127	Generation of multi-photon Greenberger–Horne–Zeilinger states and cluster states through a quantum-dot spin in optical microcavity. Optics Communications, 2014, 313, 294-298.	2.1	4
128	Scheme for generating cluster-type entangled squeezed vacuum states via cross-Kerr nonlinearity. Optics Communications, 2014, 324, 81-84.	2.1	4
129	Quantum Delayed-Choice Experiment and Wave-Particle Superposition. International Journal of Theoretical Physics, 2015, 54, 2517-2523.	1.2	4
130	Multi-qubit non-adiabatic holonomic controlled quantum gates in decoherence-free subspaces. Quantum Information Processing, 2016, 15, 3651-3661.	2.2	4
131	Complete and nondestructive polarization-entangled cluster state analysis assisted by a cavity input–output process. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 342.	2.1	4
132	Engineering steady-state entanglement via dissipation in coupled cavities. Laser Physics Letters, 2017, 14, 055206.	1.4	4
133	Engineering multipartite steady entanglement of distant atoms via dissipation. Frontiers of Physics, $2018, 13, 1.$	5.0	4
134	Heralded teleportation of a controlled-NOT gate for nitrogen-vacancy centers coupled to a microtoroid resonator. Laser Physics, 2019, 29, 025205.	1.2	4
135	Topological and nontopological photonic states in two coupled circuit quantum electrodynamics chains. Laser Physics Letters, 2020, 17, 055206.	1.4	4
136	Simultaneous Cooling of Two Mechanical Resonators with Intracavity Squeezed Light. Annalen Der Physik, 2021, 533, 2100074.	2.4	4
137	Topological phase transition and detectable edge state in a quasi-three-dimensional circuit quantum electrodynamic lattice. Physical Review A, 2021, 104, .	2.5	4
138	Modified quantum delayed-choice experiment without quantum control or entanglement assistance. Physical Review A, 2021, 104, .	2.5	4
139	Special modes induced by inter-chain coupling in a non-Hermitian ladder system. Communications in Theoretical Physics, 2020, 72, 105101.	2.5	4
140	Controllable photon blockade in double-cavity optomechanical system with Kerr-type nonlinearity. Quantum Information Processing, 2022, 21, .	2.2	4
141	Quantum Computation and Entangled-State Generation Through Photon Emission and Absorption Processes inÂSeparatedÂCavities. International Journal of Theoretical Physics, 2010, 49, 2723-2733.	1.2	3
142	Implementation of nonlocal Bell-state measurement and quantum information transfer with weak Kerr nonlinearity. Chinese Physics B, 2011, 20, 120307.	1.4	3
143	LINEAR OPTICAL IMPLEMENTATION OF DISCRETE QUANTUM FOURIER TRANSFORM WITH CONVENTIONAL PHOTON DETECTORS. International Journal of Quantum Information, 2011, 09, 509-518.	1.1	3
144	Nondestructive N-atom Greenberger–Horne–Zeilinger state analyzer via the cavity input–output process. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 2156.	2.1	3

#	Article	IF	Citations
145	Realization of optimal symmetric universal and phase-covariant quantum cloning with quantum dot spins in cavity QED. Journal of Modern Optics, 2012, 59, 1272-1277.	1.3	3
146	Entanglement purification for a three-qubit W-like state in amplitude damping. Journal of the Korean Physical Society, 2012, 61, 1938-1943.	0.7	3
147	Scheme for generating a cluster-type entangled squeezed vacuum state via cavity QED. Chinese Physics B, 2014, 23, 040301.	1.4	3
148	Quantum cloning based on iSWAP gate with nitrogen-vacancy centers in photonic crystal cavities. Optics Communications, 2014, 333, 187-192.	2.1	3
149	A scheme for direct implementation of a two-target qubit controlled phase gate with quantum dots in coupled photonic crystal cavities without using classical laser pulses. Laser Physics Letters, 2014, 11, 125202.	1.4	3
150	Scheme for implementing $\langle i \rangle N \langle i \rangle$ -qubit controlled phase gate of photons assisted by quantum-dot-microcavity coupled system: optimal probability of success. Laser Physics Letters, 2015, 12, 055201.	1.4	3
151	Preparation of free-travelling three-mode W-type entangled squeezed vacuum states. Optics Communications, 2016, 361, 13-16.	2.1	3
152	Generation of large scale hyperentangled photonic GHZ states with an error-detected pattern. European Physical Journal D, 2019, 73, 1.	1.3	3
153	Topological and Nontopological Edge States Induced by Qubitâ€Assisted Coupling Potentials. Annalen Der Physik, 2020, 532, 2000067.	2.4	3
154	Optical response based on Stokes and anti-Stokes scattering processes in cavity optomechanical system. Quantum Information Processing, 2021, 20, 1.	2.2	3
155	Influence of Kerr Medium on Entanglement ofÂCascade-Type Three-Level Atoms and a Bimodal Cavity Field. International Journal of Theoretical Physics, 2009, 48, 2818-2825.	1.2	2
156	Quantum Mechanical Algorithm for Solving Quadratic Residue Equation. International Journal of Theoretical Physics, 2009, 48, 3262-3267.	1.2	2
157	Generation of Multi-qubit Graph States via Spin Networks. International Journal of Theoretical Physics, 2011, 50, 3033-3042.	1.2	2
158	Realization of nondestructive multi-atom cluster state analyzer via the cavity input–output process. Quantum Information Processing, 2013, 12, 2749-2763.	2.2	2
159	Quantum computation and entangled state generation via long-range off-resonant Raman coupling. Quantum Information Processing, 2013, 12, 2207-2217.	2.2	2
160	Scheme for implementing the optimal quantum cloning via long-range off-resonant Raman coupling. Journal of the Korean Physical Society, 2013, 63, 1696-1702.	0.7	2
161	Linear Optical Scheme for Local Transformation of Bipartite Resources into a Multipartite W State. International Journal of Theoretical Physics, 2013, 52, 15-21.	1.2	2
162	Quantum information processing in collective-rotating decoherence-free subspace. Quantum Information Processing, 2015, 14, 1855-1867.	2,2	2

#	Article	IF	CITATIONS
163	Scheme for generating GHZ-type and W-type entangled squeezed vacuum states in free-travelling optical fields. Optics Communications, 2016, 358, 54-58.	2.1	2
164	Entanglement Purification on Separate Atoms in an Error-Detected Pattern. International Journal of Theoretical Physics, 2019, 58, 1404-1417.	1.2	2
165	Defect-position-dependent \$mathcal{PT}\$ -symmetry breaking in coupled Su–Schrieffer–Heeger chains. Laser Physics Letters, 2019, 16, 125203.	1.4	2
166	Topological phase transition of the generalized Su–Schrieffer–Heeger model based on a frequency-modulated circuit quantum electrodynamics lattice. Laser Physics Letters, 2020, 17, 065203.	1.4	2
167	Cavity optomechanical system–a powerful platform for investigating quantum effects. Fundamental Research, 2021, 1, 217-219.	3.3	2
168	Optical Amplification and Fast-Slow Light in a Three-Mode Cavity Optomechanical System without Rotating Wave Approximation. Photonics, 2021, 8, 384.	2.0	2
169	Tunable Topological Beam Splitter in Superconducting Circuit Lattice. Quantum Reports, 2021, 3, 1-12.	1.3	2
170	Adiabatic Pumping in a Generalized Aubry–André Model Family with Mobility Edges. Annalen Der Physik, 0, , 2100270.	2.4	2
171	Entanglement Concentration for Three-Atom W State via Introducing an Auxiliary Atom in Cavity QED. International Journal of Theoretical Physics, 2011, 50, 555-561.	1.2	1
172	Implementing of Quantum Cloning with Spatially Separated Quantum Dot Spins. International Journal of Theoretical Physics, 2016, 55, 3088-3096.	1.2	1
173	Scheme for generating a long-distance two-photon entangled state in a noisy channel via time-bin encoding and decoding. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 412.	2.1	1
174	Preparation of GHZ-Type and W-Type Entangled Squeezed Vacuum States Based on Cavity QED. International Journal of Theoretical Physics, 2018, 57, 740-749.	1.2	1
175	Resource-Efficient Direct Entanglement Measurement of Werner State with Hybrid Spin-Photon Interaction System. International Journal of Theoretical Physics, 2019, 58, 2994-3005.	1.2	1
176	Simultaneous squeezing of multi-mechanical-modes in a hybrid optomechanical system based on amplitude modulation. European Physical Journal D, 2020, 74, 1.	1.3	1
177	Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice. Chinese Physics B, 0, , .	1.4	1
178	Topological phase transition in cavity optomechanical system with periodical modulation. Chinese Physics B, 0 , , .	1.4	1
179	Quantum Computer Algorithm for Parity Determination Based on Quantum Counting. International Journal of Theoretical Physics, 2009, 48, 1945-1949.	1.2	0
180	General Quantum Circuits for Implementing Deterministic Entanglement Conversion. International Journal of Theoretical Physics, 2011, 50, 3134-3140.	1.2	0

#	Article	IF	CITATIONS
181	THE INFLUENCE OF DZYALOSHINSKII–MORIYA ANISOTROPIC ANTISYMMETRIC INTERACTION ON ENTANGLEMENT IN A THREE-QUBIT ISING MODEL WITH INTRINSIC DECOHERENCE. International Journal of Quantum Information, 2011, 09, 665-676.	1.1	0
182	NONDESTRUCTIVE ENTANGLEMENT ANALYSIS AND GENERATION WITH ATOMS IN LOW-Q CAVITIES ASSISTED BY COHERENT LIGHT. International Journal of Quantum Information, 2013, 11, 1350055.	1.1	0
183	Quantum state manipulation of dipole emitters with a plasmonic double-bar resonator. Quantum Information Processing, 2014, 13, 2513-2523.	2.2	0
184	Linear-Optical Proposal for Implementation of the Two-Logic-Qubit Controlled Phase Gate in Decoherence-Free Subspace with Conventional Photon Detectors. International Journal of Theoretical Physics, 2016, 55, 447-456.	1.2	0
185	Quantum information processing in a decoherence-free subspace for the $\frac{1}{x} $ and $\frac{1}{x} $ if x -type collective noise. Quantum Information Processing, 2018, 17, 1.	2.2	0
186	Cooling a Mechanical Oscillator in Opto-electro-mechanical System with Frequency Modulations. International Journal of Theoretical Physics, 2020, 59, 2781-2794.	1.2	0
187	Observing two-particle Anderson localization in linear disordered photonic lattices. Optics Express, 2021, 29, 40428-40446.	3.4	0
188	General bounded corner states in two-dimensional off-diagonal Aubry–André–Harper model with flat bands. New Journal of Physics, 2021, 23, 123008.	2.9	0
189	Dissipative Generation of Twoâ€Mode Mechanical Squeezing via Frequency Modulation. Advanced Quantum Technologies, 2022, 5, 2100113.	3.9	0