Sho Ohata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5638990/publications.pdf Version: 2024-02-01

SHO ΟΗΛΤΛ

#	Article	IF	CITATIONS
1	Glacially sourced dust as a potentially significant source of ice nucleating particles. Nature Geoscience, 2019, 12, 253-258.	12.9	101
2	Anthropogenic combustion iron as a complex climate forcer. Nature Communications, 2018, 9, 1593.	12.8	86
3	Anthropogenic iron oxide aerosols enhance atmospheric heating. Nature Communications, 2017, 8, 15329.	12.8	73
4	A key process controlling the wet removal of aerosols: new observational evidence. Scientific Reports, 2016, 6, 34113.	3.3	52
5	Evaluation of groundâ€based black carbon measurements by filterâ€based photometers at two Arctic sites. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3544-3572.	3.3	51
6	Technique and theoretical approach for quantifying the hygroscopicity of black-carbon-containing aerosol using a single particle soot photometer. Journal of Aerosol Science, 2015, 81, 110-126.	3.8	41
7	Improved technique for measuring the size distribution of black carbon particles in liquid water. Aerosol Science and Technology, 2016, 50, 242-254.	3.1	35
8	Effects of wet deposition on the abundance and size distribution of black carbon in East Asia. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4691-4712.	3.3	34
9	Evaluation of a Method for Measurement of the Concentration and Size Distribution of Black Carbon Particles Suspended in Rainwater. Aerosol Science and Technology, 2011, 45, 1326-1336.	3.1	32
10	Evaluation of a Method to Measure Black Carbon Particles Suspended in Rainwater and Snow Samples. Aerosol Science and Technology, 2013, 47, 1073-1082.	3.1	32
11	Black Carbon and Inorganic Aerosols in Arctic Snowpack. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13325-13356.	3.3	31
12	Accuracy of black carbon measurements by a filter-based absorption photometer with a heated inlet. Aerosol Science and Technology, 2019, 53, 1079-1091.	3.1	26
13	Wet deposition of black carbon at a remote site in the East China Sea. Journal of Geophysical Research D: Atmospheres, 2014, 119, 10485-10498.	3.3	25
14	Observational constraint of in-cloud supersaturation for simulations of aerosol rainout in atmospheric models. Npj Climate and Atmospheric Science, 2019, 2, .	6.8	25
15	Detection of light-absorbing iron oxide particles using a modified single-particle soot photometer. Aerosol Science and Technology, 2016, 50, 1-4.	3.1	24
16	Hygroscopicity of materials internally mixed with black carbon measured in Tokyo. Journal of Geophysical Research D: Atmospheres, 2016, 121, 362-381.	3.3	23
17	Seasonal Progression of the Deposition of Black Carbon by Snowfall at Nyâ€Ã…lesund, Spitsbergen. Journal of Geophysical Research D: Atmospheres, 2018, 123, 997-1016.	3.3	21
18	Abundance of Lightâ€Absorbing Anthropogenic Iron Oxide Aerosols in the Urban Atmosphere and Their Emission Sources. Journal of Geophysical Research D: Atmospheres, 2018, 123, 8115-8134.	3.3	20

SHO OHATA

#	Article	IF	CITATIONS
19	Abundance and Emission Flux of the Anthropogenic Iron Oxide Aerosols From the East Asian Continental Outflow. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11,194.	3.3	20
20	Estimates of mass absorption cross sections of black carbon for filter-based absorption photometers in the Arctic. Atmospheric Measurement Techniques, 2021, 14, 6723-6748.	3.1	19
21	Concentrations and Size Distributions of Black Carbon in the Surface Snow of Eastern Antarctica in 2011. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030737.	3.3	17
22	Compositions and mixing states of aerosol particles by aircraft observations in the Arctic springtime, 2018. Atmospheric Chemistry and Physics, 2021, 21, 3607-3626.	4.9	17
23	Seasonal Variation of Wet Deposition of Black Carbon in Arctic Alaska. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032240.	3.3	16
24	Abundances and Microphysical Properties of Lightâ€Absorbing Iron Oxide and Black Carbon Aerosols Over East Asia and the Arctic. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032301.	3.3	15
25	Absorption instruments inter-comparison campaign at the Arctic Pallas station. Atmospheric Measurement Techniques, 2021, 14, 5397-5413.	3.1	12
26	Contrasting source contributions of Arctic black carbon to atmospheric concentrations, deposition flux, and atmospheric and snow radiative effects. Atmospheric Chemistry and Physics, 2022, 22, 8989-9009.	4.9	12
27	Arctic black carbon during PAMARCMiP 2018 and previous aircraft experiments in spring. Atmospheric Chemistry and Physics, 2021, 21, 15861-15881.	4.9	11
28	Changes in black carbon and PM _{2.5} in Tokyo in 2003–2017. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2020, 96, 122-129.	3.8	8
29	Seasonal Variation of Wet Deposition of Black Carbon at Nyâ€Ãlesund, Svalbard. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034110.	3.3	8
30	Studies on Arctic aerosols and clouds during the ArCS project. Polar Science, 2021, 27, 100621.	1.2	3
31	Offline analysis of the chemical composition and hygroscopicity of submicrometer aerosol at an Asian outflow receptor site and comparison with online measurements. Atmospheric Chemistry and Physics, 2022, 22, 5515-5533.	4.9	2