
Eiko Sakai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5638792/publications.pdf Version: 2024-02-01

EIKO SAKAI

#	Article	IF	CITATIONS
1	Potentials of natural antioxidants from plants as antiosteoporotic agents. Studies in Natural Products Chemistry, 2022, , 1-28.	0.8	5
2	Rab34 plays a critical role as a bidirectional regulator of osteoclastogenesis. Cell Biochemistry and Function, 2022, 40, 263-277.	1.4	3
3	NLRP3 Inflammasome Negatively Regulates RANKL-Induced Osteoclastogenesis of Mouse Bone Marrow Macrophages but Positively Regulates It in the Presence of Lipopolysaccharides. International Journal of Molecular Sciences, 2022, 23, 6096.	1.8	9
4	Coronin1C Is a GDP-Specific Rab44 Effector That Controls Osteoclast Formation by Regulating Cell Motility in Macrophages. International Journal of Molecular Sciences, 2022, 23, 6619.	1.8	3
5	Liquid-phase ASEM imaging of cellular and structural details in cartilageÂand bone formed during endochondral ossification: Keap1-deficient osteomalacia. Scientific Reports, 2021, 11, 5722.	1.6	2
6	A novel role of HSP90 in regulating osteoclastogenesis by abrogating Rab11b-driven transport. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119096.	1.9	12
7	The Role of Cytokines Produced via the NLRP3 Inflammasome in Mouse Macrophages Stimulated with Dental Calculus in Osteoclastogenesis. International Journal of Molecular Sciences, 2021, 22, 12434.	1.8	8
8	The Inhibitory Role of Rab11b in Osteoclastogenesis through Triggering Lysosome-Induced Degradation of c-Fms and RANK Surface Receptors. International Journal of Molecular Sciences, 2020, 21, 9352.	1.8	13
9	Rab11A Functions as a Negative Regulator of Osteoclastogenesis through Dictating Lysosome-Induced Proteolysis of c-fms and RANK Surface Receptors. Cells, 2020, 9, 2384.	1.8	14
10	Dimethyl fumarate prevents osteoclastogenesis by decreasing NFATc1 expression, inhibiting of erk and p38 MAPK phosphorylation, and suppressing of HMGB1 release. Biochemical and Biophysical Research Communications, 2020, 530, 455-461.	1.0	10
11	Actin binding LIM 1 (abLIM1) negatively controls osteoclastogenesis by regulating cell migration and fusion. Journal of Cellular Physiology, 2019, 234, 486-499.	2.0	7
12	Calcium phosphate mineralization in bone tissues directly observed in aqueous liquid by atmospheric SEM (ASEM) without staining: microfluidics crystallization chamber and immuno-EM. Scientific Reports, 2019, 9, 7352.	1.6	21
13	KBTBD11, a novel BTB-Kelch protein, is a negative regulator of osteoclastogenesis through controlling Cullin3-mediated ubiquitination of NFATc1. Scientific Reports, 2019, 9, 3523.	1.6	17
14	Rutaecarpine attenuates osteoclastogenesis by impairing macrophage colony stimulating factor and receptor activator of nuclear factor №â€B ligandâ€stimulated signalling pathways. Clinical and Experimental Pharmacology and Physiology, 2018, 45, 863-865.	0.9	8
15	Rab44, a novel large Rab GTPase, negatively regulates osteoclast differentiation by modulating intracellular calcium levels followed by NFATc1 activation. Cellular and Molecular Life Sciences, 2018, 75, 33-48.	2.4	37
16	Dihydroartemisinin represses osteoclastogenesis of bone marrow macrophages through reduced NFATc1 expression and impaired phosphorylation of lκBα . Biomedical Research, 2018, 39, 169-177.	0.3	2
17	The dental resin monomers HEMA and TEGDMA have inhibitory effects on osteoclast differentiation with low cytotoxicity. Journal of Applied Toxicology, 2017, 37, 817-824.	1.4	12
18	New functions of lysosomes in bone cells. Journal of Oral Biosciences, 2017, 59, 92-95.	0.8	7

Εικό Sakai

#	Article	IF	CITATIONS
19	Effects of deficiency of Kelchâ€like ECHâ€associated protein 1 on skeletal organization: a mechanism for diminished nuclear factor of activated T cells cytoplasmic 1 during osteoclastogenesis. FASEB Journal, 2017, 31, 4011-4022.	0.2	19
20	Sanguiin H-6, a constituent of Rubus parvifolius L., inhibits receptor activator of nuclear factor-l̂ºB ligand-induced osteoclastogenesis and bone resorption in vitro and prevents tumor necrosis factor-l̂±-induced osteoclast formation in vivo. Phytomedicine, 2016, 23, 828-837.	2.3	14
21	The Transcription Factor EB (TFEB) Regulates Osteoblast Differentiation Through ATF4/CHOPâ€Dependent Pathway. Journal of Cellular Physiology, 2016, 231, 1321-1333.	2.0	42
22	<scp>C</scp> afestol has a weaker inhibitory effect on osteoclastogenesis than kahweol and promotes osteoblast differentiation. BioFactors, 2015, 41, 222-231.	2.6	11
23	Rab27A Regulates Transport of Cell Surface Receptors Modulating Multinucleation and Lysosome-Related Organelles in Osteoclasts. Scientific Reports, 2015, 5, 9620.	1.6	51
24	Dual Effects of Liquiritigenin on the Proliferation of Bone Cells: Promotion of Osteoblast Differentiation and Inhibition of Osteoclast Differentiation. Phytotherapy Research, 2015, 29, 1714-1721.	2.8	15
25	Cobalt protoporphyrin represses osteoclastogenesis through blocking multiple signaling pathways. BioMetals, 2015, 28, 725-732.	1.8	5
26	Coffee and Bone Metabolism. , 2015, , 869-875.		1
27	Inhibitory effects of tertâ€butylhydroquinone on osteoclast differentiation via upâ€regulation of heme oxygenaseâ€1 and downâ€regulation of HMCB1 release and NFATc1 expression. Journal of Applied Toxicology, 2014, 34, 49-56.	1.4	17
28	Structural and phylogenetic comparison of napsin genes: The duplication, loss of function and human-specific pseudogenization of napsin B. Gene, 2013, 517, 147-157.	1.0	3
29	Fisetin Inhibits Osteoclastogenesis Through Prevention of RANKL-Induced ROS Production by Nrf2-Mediated Up-regulation of Phase II Antioxidant Enzymes. Journal of Pharmacological Sciences, 2013, 121, 288-298.	1.1	52
30	Cathepsin E Deficiency Impairs Autophagic Proteolysis in Macrophages. PLoS ONE, 2013, 8, e82415.	1.1	27
31	The Coffee Diterpene Kahweol Prevents Osteoclastogenesis via Impairment of NFATc1 Expression and Blocking of Erk Phosphorylation. Journal of Pharmacological Sciences, 2012, 118, 479-486.	1.1	34
32	Deltamethrin inhibits osteoclast differentiation via regulation of heme oxygenase-1 and NFATc1. Toxicology in Vitro, 2012, 26, 817-822.	1.1	13
33	Genetic backgrounds and redox conditions influence morphological characteristics and cell differentiation of osteoclasts in mice. Cell and Tissue Research, 2012, 348, 81-94.	1.5	10
34	Suppression of RANKLâ€dependent heme oxygenaseâ€1 is required for high mobility group box 1 release and osteoclastogenesis. Journal of Cellular Biochemistry, 2012, 113, 486-498.	1.2	50
35	Effects of non-iron metalloporphyrins on growth and gene expression of Porphyromonas gingivalis. Microbiology and Immunology, 2011, 55, 141-153.	0.7	15
36	Engineering Bone Formation from Human Dental Pulp- and Periodontal Ligament-Derived Cells. Annals of Biomedical Engineering, 2011, 39, 26-34.	1.3	37

Εικό Sakai

#	Article	IF	CITATIONS
37	Determination of active site of lysine-specific cysteine proteinase (Lys-gingipain) by use of a Porphyromonas gingivalis plasmid system. Archives of Oral Biology, 2008, 53, 538-544.	0.8	3
38	Berberine inhibits RANKL-induced osteoclast formation and survival through suppressing the NF-κB and Akt pathways. European Journal of Pharmacology, 2008, 580, 70-79.	1.7	132
39	Construction of Recombinant Hemagglutinin Derived from the Gingipain-Encoding Gene of Porphyromonas gingivalis , Identification of Its Target Protein on Erythrocytes, and Inhibition of Hemagglutination by an Interdomain Regional Peptide. Journal of Bacteriology, 2007, 189, 3977-3986.	1.0	32
40	Molecular analysis of RANKL-independent cell fusion of osteoclast-like cells induced by TNF-α, lipopolysaccharide, or peptidoglycan. Journal of Cellular Biochemistry, 2007, 101, 122-134.	1.2	122
41	Pepstatin A, an Aspartic Proteinase Inhibitor, Suppresses RANKL-Induced Osteoclast Differentiation. Journal of Biochemistry, 2006, 139, 583-590.	0.9	17
42	Current Topics in Pharmacological Research on Bone Metabolism: Osteoclast Differentiation Regulated by Glycosphingolipids. Journal of Pharmacological Sciences, 2006, 100, 195-200.	1.1	27
43	Characterization of rat cathepsin E and mutants with changed active-site residues and lacking propeptides and N-glycosylation, expressed in human embryonic kidney 293T cells. FEBS Journal, 2006, 273, 219-229.	2.2	12
44	Porphyromonas gingivalis-induced platelet aggregation in plasma depends on Hgp44 adhesin but not Rgp proteinase. Molecular Microbiology, 2006, 59, 152-167.	1.2	73
45	The Hemoglobin Receptor Protein of Porphyromonas gingivalis Inhibits Receptor Activator NF-κB Ligand-Induced Osteoclastogenesis from Bone Marrow Macrophages. Infection and Immunity, 2006, 74, 2544-2551.	1.0	19
46	Identification of a New Membrane-associated Protein That Influences Transport/Maturation of Gingipains and Adhesins of Porphyromonas gingivalis. Journal of Biological Chemistry, 2005, 280, 8668-8677.	1.6	135
47	Novel stationary-phase-upregulated protein of Porphyromonas gingivalis influences production of superoxide dismutase, thiol peroxidase and thioredoxin. Microbiology (United Kingdom), 2005, 151, 841-853.	0.7	24
48	The major structural components of two cell surface filaments of Porphyromonas gingivalis are matured through lipoprotein precursors. Molecular Microbiology, 2004, 52, 1513-1525.	1.2	75
49	Disruption of structural and functional integrity of alpha2-macroglobulin by cathepsin E. FEBS Journal, 2003, 270, 1189-1198.	0.2	16
50	Adhesins encoded by the gingipain genes of Porphyromonas gingivalis are responsible for co-aggregation with Prevotella intermedia. Microbiology (United Kingdom), 2003, 149, 1257-1264.	0.7	55
51	The Regulation of Bone Resorption in Tooth Formation and Eruption Processes in Mouse Alveolar Crest Devoid of Cathepsin K. Journal of Pharmacological Sciences, 2003, 91, 285-294.	1.1	17
52	U0126 and PD98059, Specific Inhibitors of MEK, Accelerate Differentiation of RAW264.7 Cells into Osteoclast-like Cells. Journal of Biological Chemistry, 2002, 277, 47366-47372.	1.6	279
53	Expression and localization of MGP in rat tooth cementum. Archives of Oral Biology, 2001, 46, 585-592.	0.8	22
54	Lactosylceramide Is Essential for the Osteoclastogenesis Mediated by Macrophage-Colony-stimulating Factor and Receptor Activator of Nuclear Factor-κB Ligand. Journal of Biological Chemistry, 2001, 276, 46031-46038.	1.6	48

#	Article	IF	CITATIONS
55	Cell Adhesion Is a Prerequisite for Osteoclast Survival. Biochemical and Biophysical Research Communications, 2000, 270, 550-556.	1.0	43
56	Age-Related and Dexamethasone-Induced Changes in Cathepsins E and D in Rat Thymic and Splenic Cells. Archives of Biochemistry and Biophysics, 1996, 333, 349-358.	1.4	20