Manabu D Yamanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5638727/publications.pdf Version: 2024-02-01

		136950	155660
117	3,692	32	55
papers	citations	h-index	g-index
117	117	117	2268
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Weather radar detection of planetary boundary layer and smoke layer top of peatland fire in Central Kalimantan, Indonesia. Scientific Reports, 2021, 11, 367.	3.3	7
2	Natural Capital-Based Societies in the Tropics. , 2021, , 197-245.		1
3	Analysis of Spatial and Seasonal Differences in the Diurnal Rainfall Cycle over Sumatera Revealed by 17-Year TRMM 3B42 Dataset. Scientific Online Letters on the Atmosphere, 2019, 15, 216-221.	1.4	9
4	Interfacial, International and Interdisciplinary Studies on Maritime-Continent Peatland Controlling Global Climate. Suimon Mizu Shigen Gakkaishi, 2019, 32, 189-200.	0.1	0
5	Maritime continent coastlines controlling Earth's climate. Progress in Earth and Planetary Science, 2018, 5, .	3.0	70
6	Meridional march of diurnal rainfall over Jakarta, Indonesia, observed with a C-band Doppler radar: an overview of the HARIMAU2010 campaign. Progress in Earth and Planetary Science, 2018, 5, .	3.0	36
7	Diurnal cycle over a coastal area of the Maritime Continent as derived by special networked soundings over Jakarta during HARIMAU2010. Progress in Earth and Planetary Science, 2018, 5, .	3.0	15
8	El Niño Southern Oscillation Signature in Atmospheric Water Isotopes over Maritime Continent during Wet Season. Journal of the Meteorological Society of Japan, 2017, 95, 49-66.	1.8	6
9	Tropical Coastal Dehydrator in Global Atmospheric Water Circulation. Geophysical Research Letters, 2017, 44, 11,636.	4.0	22
10	An Overview of the Asian Monsoon Years 2007–2012 (AMY) and Multi-Scale Interactions in the Extreme Rainfall Events over the Indonesian Maritime Continent. World Scientific Series on Asia-Pacific Weather and Climate, 2017, , 365-385.	0.2	10
11	ENSO Influences on Rainfall Extremes around Sulawesi and Maluku Islands in the Eastern Indonesian Maritime Continent. Scientific Online Letters on the Atmosphere, 2016, 12, 37-41.	1.4	28
12	Physical climatology of Indonesian maritime continent: An outline to comprehend observational studies. Atmospheric Research, 2016, 178-179, 231-259.	4.1	94
13	Intraseasonal Variability of δ ¹⁸ 0 of Precipitation over the Indonesian Maritime Continent Related to the Madden–Julian Oscillation. Scientific Online Letters on the Atmosphere, 2016, 12, 192-197.	1.4	10
14	How Much is the Precipitation Amount over the Tropical Coastal Region?. Journal of Climate, 2016, 29, 1231-1236.	3.2	62
15	Rainfall-Driven Diurnal Variations of Water Level in the Ciliwung River, West Jawa, Indonesia. Scientific Online Letters on the Atmosphere, 2014, 10, 141-144.	1.4	15
16	Cloud episode propagation over the Indonesian Maritime Continent from 10years of infrared brightness temperature observations. Atmospheric Research, 2013, 120-121, 268-286.	4.1	24
17	Regional variability of raindrop size distribution over Indonesia. Annales Geophysicae, 2013, 31, 1941-1948.	1.6	47
18	The Variability of Stable Isotopes and Water Origin of Precipitation over the Maritime Continent. Scientific Online Letters on the Atmosphere, 2013, 9, 74-78.	1.4	22

#	Article	IF	CITATIONS
19	The Effects of an Active Phase of the Madden-Julian Oscillation on the Extreme Precipitation Event over Western Java Island in January 2013. Scientific Online Letters on the Atmosphere, 2013, 9, 79-83.	1.4	57
20	First simultaneous measurement of vertical air velocity, particle fall velocity, and hydrometeor sphericity in stratiform precipitation: Results from 47 MHz windâ€profiling radar and 532 nm polarization lidar observations. Radio Science, 2012, 47, .	1.6	4
21	Modulation of Diurnal Rainfall Cycle by the Madden-Julian Oscillation Based on One-Year Continuous Observations with a Meteorological Radar in West Sumatera. Scientific Online Letters on the Atmosphere, 2012, 8, 111-114.	1.4	29
22	Interannual Rainfall Variability over Northwestern Jawa and its Relation to the Indian Ocean Dipole and El Niño-Southern Oscillation Events. Scientific Online Letters on the Atmosphere, 2012, 8, 69-72.	1.4	57
23	Migration Process and 3D Wind Field of Precipitation Systems Associated with a Diurnal Cycle in West Sumatera: Dual Doppler Radar Analysis during the HARIMAU2006 Campaign. Journal of the Meteorological Society of Japan, 2011, 89, 341-361.	1.8	12
24	Convective Systems Developed along the Coastline of Sumatera Island, Indonesia, Observed with an X-band Doppler Radar during the HARIMAU2006 Campaign. Journal of the Meteorological Society of Japan, 2011, 89A, 61-81.	1.8	26
25	Effects of Large-scale Moisture Transport and Mesoscale Processes on Precipitation Isotope Ratios Observed at Sumatera, Indonesia. Journal of the Meteorological Society of Japan, 2011, 89A, 49-59.	1.8	24
26	Lower tropospheric horizontal wind over Indonesia: A comparison of wind profiler network observations with global reanalyses. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 986-995.	1.6	15
27	Observational study on diurnal precipitation cycle in equatorial Indonesia using 1.3-GHz wind profiling radar network and TRMM precipitation radar. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 1031-1042.	1.6	25
28	Seasonal Changes in a Vertical Thermal Structure Producing Stable Lower-Troposphere Layers over the Inland Region of the Indochina Peninsula. Journal of Climate, 2011, 24, 3211-3223.	3.2	3
29	Case Study of an Intense Wind Event Associated with a Mesoscale Convective System in West Sumatera during the HARIMAU2006 Campaign. Journal of the Meteorological Society of Japan, 2011, 89A, 239-257.	1.8	12
30	Turbulence generation by Kelvinâ€Helmholtz instability in the tropical tropopause layer observed with a 47 MHz range imaging radar. Journal of Geophysical Research, 2010, 115, .	3.3	15
31	Multiscale Features of Line-Shaped Precipitation System Generation in Central Japan during Late Baiu Season. Journal of the Meteorological Society of Japan, 2010, 88, 909-930.	1.8	4
32	Temperature Inversions over the Inland Indochina Revealed by GAME-T Enhanced Rawinsonde Observations. Scientific Online Letters on the Atmosphere, 2010, 6, 5-8.	1.4	10
33	Internal Structures of Migratory Cloud Systems with Diurnal Cycle over Sumatera Island during CPEA-I Campaign. Journal of the Meteorological Society of Japan, 2009, 87, 157-170.	1.8	21
34	The Impact of Orographically-Induced Gravity Waves on the Diurnal Cycle of Rainfall over Southeast Kalimantan Island. Atmospheric and Oceanic Science Letters, 2009, 2, 35-39.	1.3	11
35	Why a Large Amount of Rain Falls over the Sea in the Vicinity of Western Sumatra Island during Nighttime. Journal of Applied Meteorology and Climatology, 2009, 48, 1345-1361.	1.5	91
36	The relationship between the isotopic content of precipitation and the precipitation amount in tropical regions. Journal of Geochemical Exploration, 2009, 102, 113-122.	3.2	156

#	Article	IF	CITATIONS
37	Comparison Study of Lower-tropospheric Horizontal Wind over Sumatra, Indonesia Using NCEP/NCAR Reanalysis, Operational Radiosonde, and the Equatorial Atmosphere Radar. Scientific Online Letters on the Atmosphere, 2009, 5, 21-24.	1.4	5
38	Isotope ratios of precipitation and water vapor observed in Typhoon Shanshan. Journal of Geophysical Research, 2008, 113, .	3.3	69
39	Diurnal Variation of Rainfall and Precipitable Water over Siberut Island off the Western Coast of Sumatra Island. Scientific Online Letters on the Atmosphere, 2008, 4, 125-128.	1.4	17
40	Differences of Rainfall Characteristics between Coastal and Interior Areas of Central Western Sumatera, Indonesia. Journal of the Meteorological Society of Japan, 2008, 86, 593-611.	1.8	25
41	HARIMAU Radar-Profiler Network over the Indonesian Maritime Continent: A GEOSS Early Achievement for Hydrological Cycle and Disaster Prevention. Journal of Disaster Research, 2008, 3, 78-88.	0.7	30
42	The Formation of Nocturnal Rainfall Offshore from Convection over Western Kalimantan (Borneo) Island. Journal of the Meteorological Society of Japan, 2008, 86A, 187-203.	1.8	39
43	The Impact of Trans-equatorial Monsoon Flow on the Formation of Repeated Torrential Rains over Java Island. Scientific Online Letters on the Atmosphere, 2007, 3, 93-96.	1.4	74
44	Precipitation in Nepal between 1987 and 1996. International Journal of Climatology, 2007, 27, 1753-1762.	3.5	89
45	Seasonal and interannual variations of temperature in the tropical tropopause layer (TTL) over Indonesia based on operational rawinsonde data during 1992–1999. Journal of Geophysical Research, 2006, 111, .	3.3	10
46	Multiscale Aspects of Convective Systems Associated with an Intraseasonal Oscillation over the Indonesian Maritime Continent. Monthly Weather Review, 2006, 134, 1682-1696.	1.4	42
47	Lower-Stratospheric and Upper-Tropospheric Disturbances Observed by Radiosondes over Thailand during January 2000. Journals of the Atmospheric Sciences, 2006, 63, 3437-3447.	1.7	4
48	Climatological Description of Seasonal Variations in Lower-Tropospheric Temperature Inversion Layers over the Indochina Peninsula. Journal of Climate, 2006, 19, 3307-3319.	3.2	43
49	Vertical Wind Characteristics in Precipitating Cloud Systems over West Sumatera, Indonesia, Observed with Equatorial Atmosphere Radar: Case Study of 23-24 April 2004 during the First CPEA Campaign Period. Journal of the Meteorological Society of Japan, 2006, 84A, 113-131.	1.8	22
50	Dry Intrusions Following Eastward-Propagating Synoptic-Scale Cloud Systems over Sumatera Island. Journal of the Meteorological Society of Japan, 2006, 84, 277-294.	1.8	18
51	Seasonal and Interannual Variations of Diurnal Cycles of Wind and Cloud Activity Observed at Serpong, West Jawa, Indonesia. Journal of the Meteorological Society of Japan, 2006, 84A, 171-194.	1.8	20
52	Interannual variation of stable isotopes in precipitation at Bangkok in response to El Ñino Southern Oscillation. Hydrological Processes, 2005, 19, 3413-3423.	2.6	38
53	Validation of Changing Water Origins over Indochina during the Withdrawal of the Asian Monsoon using Stable Isotopes. Scientific Online Letters on the Atmosphere, 2005, 1, 113-116.	1.4	25
54	Diurnal Cycle of Cloud System Migration over Sumatera Island. Journal of the Meteorological Society of Japan, 2005, 83, 835-850.	1.8	87

Μαναβύ Ο Υαμανακά

#	Article	IF	CITATIONS
55	Detailed structure within a tropical cyclone "eyeâ€, Geophysical Research Letters, 2005, 32, .	4.0	17
56	Combined wind profiler-weather radar observations of orographic rainband around Kyushu, Japan in the Baiu season. Annales Geophysicae, 2004, 22, 3971-3982.	1.6	16
57	Diurnal Land–Sea Rainfall Peak Migration over Sumatera Island, Indonesian Maritime Continent, Observed by TRMM Satellite and Intensive Rawinsonde Soundings. Monthly Weather Review, 2004, 132, 2021-2039.	1.4	307
58	Vertical moisture transport above the mixed layer around the mountains in western Sumatra. Geophysical Research Letters, 2004, 31, .	4.0	20
59	Ozonesonde observations in the Indonesian maritime continent: a case study on ozone rich layer in the equatorial upper troposphere. Atmospheric Environment, 2003, 37, 353-362.	4.1	18
60	Gravity wave generation in the lower stratosphere due to passage of the typhoon 9426 (Orchid) observed by the MU radar at Shigaraki (34.85°N, 136.10°E). Journal of Geophysical Research, 2003, 108, .	3.3	51
61	Diurnal Variation of Precipitable Water over a Mountainous Area of Sumatra Island. Journal of Applied Meteorology and Climatology, 2003, 42, 1107-1115.	1.7	79
62	Seasonal Variations of Tropospheric Wind over Indonesia: Comparison between Collected Operational Rawinsonde Data and NCEP Reanalysis for 1992-99. Journal of the Meteorological Society of Japan, 2003, 81, 829-850.	1.8	22
63	MesoALPHAScale Wind Field and Precipitating Clouds in Typhoon 9426 (Orchid) Observed by the MU Radar. Journal of the Meteorological Society of Japan, 2003, 81, 211-228.	1.8	21
64	Observable signatures of a convectively generated wave field over the tropics using Indian MST radar at Gadanki (13.5°N, 79.2°E). Geophysical Research Letters, 2002, 29, 19-1-19-4.	4.0	46
65	Relationship between Wind and Precipitation Observed with a UHF Radar, GPS Rawinsondes and Surface Meteorological Instruments at Kototabang, West Sumatera during September-October 1998 Journal of the Meteorological Society of Japan, 2002, 80, 347-360.	1.8	22
66	Spatial and Temporal Variations of the Rainy Season over Indonesia and their Link to ENSO Journal of the Meteorological Society of Japan, 2002, 80, 285-310.	1.8	184
67	Precipitating clouds observed by 1.3-GHz boundary layer radars in equatorial Indonesia. Annales Geophysicae, 2001, 19, 889-897.	1.6	62
68	Examination of 3-6 day Disturbances over Equatorial Indonesia Based on Boundary Layer Radar Observations during 1996-1999 at Bukittinggi, Serpong and Biak Journal of the Meteorological Society of Japan, 2001, 79, 317-331.	1.8	12
69	Meridional and temporal variations of lower-stratospheric gravity-wave activity over Japan, West Pacific ocean and East Indian ocean. Advances in Space Research, 2001, 27, 1475-1478.	2.6	0
70	A Mechanism for the Reversal of Long-term Average Vertical Velocities around East Asia during the Cold Season. Journal of the Meteorological Society of Japan, 2000, 78, 13-23.	1.8	4
71	Meso-β to -γ-Scale Wind Circulations Associated with Precipitating Clouds near Baiu Front Observed by the MU and Meteorological Radars. Journal of the Meteorological Society of Japan, 2000, 78, 69-91.	1.8	26
72	Quasi 4 Day Mode Observed by a Boundary Layer Radar at Serpong (6°S, 107°E), Indonesia. Journal of the Meteorological Society of Japan, 1999, 77, 1177-1184.	1.8	11

#	Article	IF	CITATIONS
73	Interannual and Day-to-Day Variations of Gravity Wave Activity in the Lower Stratosphere over the Eastern Part of Japan Observed in Winter 1989-95. Journal of the Meteorological Society of Japan, 1999, 77, 413-429.	1.8	16
74	Horizontal variations of gravity wave activities in the lower stratosphere over Japan: A case study in the Baiu season 1991. Earth, Planets and Space, 1999, 51, 107-113.	2.5	4
75	Frequency Spectra of Wind Velocity Fluctuations between 1 hour and 1 month in the Atmospheric Boundary Layer over Equatorial Indonesia. Journal of Geomagnetism and Geoelectricity, 1997, 49, S187-S195.	0.9	6
76	Hierarchical Structures of Vertical Velocity Variations and Precipitating Clouds near the Baiu Frontal Cyclone Center Observed by the MU and Meteorological Radars. Journal of the Meteorological Society of Japan, 1997, 75, 569-596.	1.8	27
77	Statistical analysis of gravity waves observed with the middle and upper atmosphere radar in the middle atmosphere: 1. Method and general characteristics. Journal of Geophysical Research, 1996, 101, 29511-29521.	3.3	50
78	Application of wavelet analysis to wind disturbances observed with MST radar techniques. Journal of Atmospheric and Solar-Terrestrial Physics, 1996, 58, 683-696.	0.9	13
79	Vertical eddy diffusivity in the lower and middle atmosphere: A climatology based on the MU radar observations during 1986–1992. Journal of Atmospheric and Solar-Terrestrial Physics, 1996, 58, 727-734.	0.9	61
80	Inertio-gravity waves and subtropical multiple tropopauses: Vertical wavenumber spectra of wind and temperature observed by the MU radar, radiosondes and operational rawinsonde network. Journal of Atmospheric and Solar-Terrestrial Physics, 1996, 58, 785-805.	0.9	26
81	An observational study of cyclogenesis in the lee of the Japan central mountains. Meteorology and Atmospheric Physics, 1996, 61, 39-53.	2.0	9
82	A Preliminary Report on Observations of Equatorial Atmosphere Dynamics in Indonesia with Radars and Radiosondes. Journal of the Meteorological Society of Japan, 1995, 73, 393-406.	1.8	39
83	Boundary Layer Radar Observations of the Passage of the Convection Center over Serpong, Indonesia (6°S, 107°E) during the TOGA COARE Intensive Observation Period. Journal of the Meteorological Society of Japan, 1995, 73, 535-548.	1.8	21
84	Diurnal variations of the planetary boundary layer observed with anL-band clear-air doppler radar. Boundary-Layer Meteorology, 1995, 74, 419-424.	2.3	31
85	Homopause control by gravity wave breaking in the planetary atmospheres. Advances in Space Research, 1995, 15, 47-50.	2.6	13
86	Meridional Variation of Lower Stratospheric Gravity Wave Activity. Journal of the Meteorological Society of Japan, 1995, 73, 407-413.	1.8	26
87	Observations of the planetary boundary layer over equatorial Indonesia with an L band clear-air Doppler radar: Initial results. Radio Science, 1995, 30, 1043-1054.	1.6	60
88	Seasonal and interannual variabilities of vertical eddy diffusivity observed by the MU radar. Advances in Space Research, 1994, 14, 277-280.	2.6	4
89	A simple model of gravity-wave momentum and energy fluxes transferred through the middle atmosphere to the upper atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 1994, 56, 1375-1385.	0.9	13
90	Middle and upper atmosphere radar observations of ionospheric density gradients produced by gravity wave packets. Journal of Geophysical Research, 1994, 99, 6321.	3.3	34

#	Article	IF	CITATIONS
91	Reply [to "Comments on â€~Middle and upper atmosphere radar observations of ionospheric density gradients produced by gravity wave packets' by W. L. Oliver et al.â€]. Journal of Geophysical Research, 1994, 99, 21415.	3.3	0
92	Seasonal variability of vertical eddy diffusivity in the middle atmosphere: 1. Three-year observations by the middle and upper atmosphere radar. Journal of Geophysical Research, 1994, 99, 18973.	3.3	202
93	A Rotor Circulation near the Baiu Front Observed by the MU Radar. Journal of the Meteorological Society of Japan, 1994, 72, 91-105.	1.8	17
94	Trans-oceanic balloon flight over East China sea. Advances in Space Research, 1993, 13, 123-126.	2.6	0
95	Polar patrol balloon experiment in Antarctica. Advances in Space Research, 1993, 13, 127-130.	2.6	7
96	Middle and upper atmosphere radar observations of ionospheric horizontal gradients produced by gravity waves. Journal of Geophysical Research, 1993, 98, 9443-9451.	3.3	21
97	First observation of the upper stratospheric vertical wind velocities using the Jicamarca VHF radar. Geophysical Research Letters, 1993, 20, 2235-2238.	4.0	17
98	Formation of multiple tropopause and stratospheric inertio-gravity waves. Advances in Space Research, 1992, 12, 181-190.	2.6	9
99	A parameterization of vertical eddy diffusivity by using "quasi-monochromatic―gravity-wave field hypothesis. Advances in Space Research, 1992, 12, 215-218.	2.6	9
100	Multiple beam observations of mid-latitude ionospheric disturbances by the MU radar. Journal of Atmospheric and Solar-Terrestrial Physics, 1991, 53, 773-779.	0.9	7
101	A perspective of Middle-Atmosphere Dynamics (MAD) studies at the New International Equatorial Observatory (NIEO). Advances in Space Research, 1990, 10, 155-159.	2.6	5
102	Picture of the global field of "quasi-monochromatic―internal gravity waves observed by stratospheric balloons and MST radars. Advances in Space Research, 1990, 10, 185-188.	2.6	7
103	MU radar: New capabilities and system calibrations. Radio Science, 1990, 25, 477-485.	1.6	92
104	Wind fluctuations near a cold vortex-tropopause funnel system observed by the MU radar. Pure and Applied Geophysics, 1989, 130, 463-479.	1.9	33
105	Internal gravity wave selection in the upper troposphere and lower stratosphere observed by the MU radar: Preliminary results. Pure and Applied Geophysics, 1989, 130, 481-495.	1.9	32
106	Internal Gravity Wave Selection in the Upper Troposphere and Lower Stratosphere Observed by the MU Radar: Preliminary Results. , 1989, , 481-495.		1
107	Wind Fluctuations near a Cold Vortex-Tropopause Funnel System Observed by the MU Radar. , 1989, , 463-479.		9
108	Three-Dimensional Air Motions over the Baiu Front Observed by a VHF-Band Doppler Radar: A Case Study. Monthly Weather Review, 1988, 116, 281-292.	1.4	20

Μαναβύ Ο Υαμανακά

#	Article	IF	CITATIONS
109	Quasi-Weekly Cycle of the Upper Tropospheric Wind Observed near the Southern Japan in Mid-Summer: Quick Looks. Journal of the Meteorological Society of Japan, 1987, 65, 811-818.	1.8	0
110	Measurement of Stratospheric Turbulence by Balloon-Borne "Glow-Discharge" Anemometer. Journal of the Meteorological Society of Japan, 1985, 63, 483-489.	1.8	12
111	Inertial Oscillation and Symmetric Motion Induced in an Inertio-Gravity Wave Critical Layer. Journal of the Meteorological Society of Japan, 1985, 63, 715-737.	1.8	8
112	Atmospheric Circulation in the Lower Stratosphere Induced by the Mesoscale Mountain Wave Breakdown. Journal of the Meteorological Society of Japan, 1985, 63, 1047-1054.	1.8	31
113	â€~â€~Clowâ€discharge'' ionic anemometer. Review of Scientific Instruments, 1985, 56, 617-622.	1.3	11
114	Observation on Microphysical Processes in the Stratiform Precipitations Including Melting Layers at Mt. Fuji. Journal of the Meteorological Society of Japan, 1985, 63, 100-111.	1.8	11
115	Meso- and Microscale Structures of Stratospheric Winds: A Quick Look of Balloon Observation. Journal of the Meteorological Society of Japan, 1984, 62, 177-182.	1.8	11
116	Propagation and Breakdown of Internal Inertio-Gravity Waves Near Critical Levels in the Middle Atmosphere. Journal of the Meteorological Society of Japan, 1984, 62, 1-17.	1.8	28
117	Multiple "Gust Layers―Observed in the Middle Stratosphere. , 1984, , 117-140.		14