Kenji Takahashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5638458/publications.pdf

Version: 2024-02-01

117625 175258 3,972 166 34 52 citations g-index h-index papers 170 170 170 4013 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis of a cellulose dissolving liquid zwitterion from general and low-cost reagents. Cellulose, 2022, 29, 3017-3024.	4.9	6
2	Direct synthesis of a robust cellulosic composite from cellulose acetate and a nanofibrillated bacterial cellulose sol. Polymer Journal, 2022, 54, 735-740.	2.7	4
3	Characterization and application of carboxylate-type zwitterions synthesized by one-step. Journal of lonic Liquids, 2022, 2, 100027.	2.7	O
4	Reducing Cellulose Crystallinity with a Noncellulose-Dissolving Solid Zwitterion and Its Application for Biomass Pretreatment. ACS Sustainable Chemistry and Engineering, 2022, 10, 6919-6924.	6.7	2
5	Controlled acetylation of kraft lignin for tailoring polyacrylonitrile-kraft lignin interactions towards the production of quality carbon nanofibers. Chemical Engineering Journal, 2021, 405, 126640.	12.7	13
6	Selective Modification of Aliphatic Hydroxy Groups in Lignin Using Ionic Liquid. Catalysts, 2021, 11, 120.	3 . 5	13
7	Low waste process of rapid cellulose transesterification using ionic liquid/DMSO mixed solvent: Towards more sustainable reaction systems. Carbohydrate Polymers, 2021, 256, 117560.	10.2	17
8	Direct Conversion of Sugarcane Bagasse into an Injection-Moldable Cellulose-Based Thermoplastic via Homogeneous Esterification with Mixed Acyl Groups. ACS Sustainable Chemistry and Engineering, 2021, 9, 5933-5941.	6.7	15
9	High loading of trimethylglycine promotes aqueous solubility of poorly water-soluble cisplatin. Scientific Reports, $2021, 11, 9770$.	3 . 3	4
10	Application of real treated wastewater to starch production by microalgae: Potential effect of nutrients and microbial contamination. Biochemical Engineering Journal, 2021, 169, 107973.	3.6	14
11	Direct Synthesis of Full-Biobased Cellulose Esters from Essential Oil Component α,β-Unsaturated Aldehydes. ACS Sustainable Chemistry and Engineering, 2021, 9, 8450-8457.	6.7	10
12	Cellulose Preferentially Dissolved over Xylan in Ionic Liquids through Precise Anion Interaction Regulated by Bulky Cations. ACS Sustainable Chemistry and Engineering, 2021, 9, 8686-8691.	6.7	6
13	A light-switching pyrene probe to detect phase-separated biomolecules. IScience, 2021, 24, 102865.	4.1	11
14	Essential Requirements of Biocompatible Cellulose Solvents. ACS Sustainable Chemistry and Engineering, 2021, 9, 11825-11836.	6.7	17
15	Polar zwitterion/saccharide-based deep eutectic solvents for cellulose processing. Carbohydrate Polymers, 2021, 267, 118171.	10.2	13
16	Synthetic zwitterions as efficient non-permeable cryoprotectants. Communications Chemistry, 2021, 4,	4. 5	13
17	Green Conversion of Total Lignocellulosic Components of Sugarcane Bagasse to Thermoplastics Through Transesterification Using Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2021, 9, 15249-15257.	6.7	12
18	Direct preparation of gels from herbal medicinal plants by using a low toxicity liquid zwitterion. Polymer Journal, 2020, 52, 467-472.	2.7	2

#	Article	IF	CITATIONS
19	Mussel-Inspired Design of a Carbon Fiber–Cellulosic Polymer Interface toward Engineered Biobased Carbon Fiber-Reinforced Composites. ACS Omega, 2020, 5, 27072-27082.	3.5	21
20	Non-aqueous, zwitterionic solvent as an alternative for dimethyl sulfoxide in the life sciences. Communications Chemistry, 2020, 3 , .	4.5	31
21	Heterogeneous Structures of Ionic Liquids as Probed by CO Rotation with Nuclear Magnetic Resonance Relaxation Analysis and Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2020, 124, 10465-10476.	2.6	8
22	Green Synthesis and Fractionation of Cellulose Acetate by Controlling the Reactivity of Polysaccharides in Sugarcane Bagasse. ACS Sustainable Chemistry and Engineering, 2020, 8, 9002-9008.	6.7	14
23	Understanding and Suppression of Side Reaction during Transesterification of Phenolic Hydroxyl Groups of Lignin with Vinyl Ester. Chemistry Letters, 2020, 49, 900-904.	1.3	4
24	Anaerobic glucose consumption is accelerated at non-proliferating elevated temperatures through upregulation of a glucose transporter gene in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2020, 104, 6719-6729.	3.6	2
25	Automatic Redirection of Carbon Flux between Glycolysis and Pentose Phosphate Pathway Using an Oxygen-Responsive Metabolic Switch in <i>Corynebacterium glutamicum</i> . ACS Synthetic Biology, 2020, 9, 814-826.	3.8	22
26	Requirement of de novo synthesis of pyruvate carboxylase in long-term succinic acid production in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2020, 104, 4313-4320.	3.6	5
27	Direct one-step synthesis of a formally fully bio-based polymer from cellulose and cinnamon flavor. Green Chemistry, 2019, 21, 4927-4931.	9.0	17
28	Quantitative analysis of native reactive functional groups on carbon fiber surface: An electrochemical approach. Applied Surface Science, 2019, 494, 315-325.	6.1	16
29	Transesterification Reaction of Cellulose with Inactive Esters in Ionic Liquids Acting as Both Catalysts and Solvents. Chemistry Letters, 2019, 48, 1122-1125.	1.3	7
30	Chemical Modification of Plasticized Lignins Using Reactive Extrusion. Frontiers in Chemistry, 2019, 7, 633.	3.6	18
31	Flame-retardant thermoplastics derived from plant cell wall polymers by single ionic liquid substitution. New Journal of Chemistry, 2019, 43, 2057-2064.	2.8	11
32	Lignin as a Functional Green Coating on Carbon Fiber Surface to Improve Interfacial Adhesion in Carbon Fiber Reinforced Polymers. Materials, 2019, 12, 159.	2.9	13
33	Examining the unique retention behavior of volatile carboxylic acids in gas chromatography using zwitterionic liquid stationary phases. Journal of Chromatography A, 2019, 1603, 288-296.	3.7	7
34	Flame-retardant plant thermoplastics directly prepared by single ionic liquid substitution. Polymer Journal, 2019, 51, 781-789.	2.7	4
35	Electron beam induced strengthening of a short carbon fiber reinforced green thermoplastic composite: Key factors determining materials performance. Composites Part A: Applied Science and Manufacturing, 2019, 121, 386-396.	7.6	12
36	Hand-holding and releasing between the anion and cation to change their macroscopic behavior in water. Green Energy and Environment, 2019, 4, 127-130.	8.7	9

#	Article	IF	CITATIONS
37	Development of High Strength Herbaceous Composites Using Cellulose Based Materials. Kobunshi Ronbunshu, 2019, 76, 297-304.	0.2	0
38	Short Carbon Fiber Reinforced Polymers: Utilizing Lignin to Engineer Potentially Sustainable Resource-Based Biocomposites. Frontiers in Chemistry, 2019, 7, 757.	3.6	12
39	Effect of anion in carboxylate-based ionic liquids on catalytic activity of transesterification with vinyl esters and the solubility of cellulose. RSC Advances, 2019, 9, 4048-4053.	3.6	26
40	A Polar Liquid Zwitterion Does Not Critically Destroy Cytochrome c at High Concentration: An Initial Comparative Study with a Polar Ionic Liquid. Australian Journal of Chemistry, 2019, 72, 139.	0.9	7
41	Design of Functional Imidazolium-Based Ionic Liquids for Biomass Processing. , 2019, , 1-7.		0
42	Application of microalgae hydrolysate as a fermentation medium for microbial production of 2-pyrone 4,6-dicarboxylic acid. Journal of Bioscience and Bioengineering, 2018, 125, 717-722.	2.2	15
43	Structural analysis of zwitterionic liquids vs. homologous ionic liquids. Journal of Chemical Physics, 2018, 148, 193807.	3.0	24
44	Alkylated alkali lignin for compatibilizing agents of carbon fiber-reinforced plastics with polypropylene. Polymer Journal, 2018, 50, 281-284.	2.7	17
45	Efficient pretreatment of bagasse at high loading in an ionic liquid. Industrial Crops and Products, 2018, 119, 243-248.	5.2	22
46	Lignocellulose nanofibers prepared by ionic liquid pretreatment and subsequent mechanical nanofibrillation of bagasse powder: Application to esterified bagasse/polypropylene composites. Carbohydrate Polymers, 2018, 182, 8-14.	10.2	35
47	Pretreatment of bagasse with a minimum amount of cholinium ionic liquid for subsequent saccharification at high loading and co-fermentation for ethanol production. Chemical Engineering Journal, 2018, 334, 657-663.	12.7	43
48	Oxidative depolymerization potential of biorefinery lignin obtained by ionic liquid pretreatment and subsequent enzymatic saccharification of eucalyptus. Industrial Crops and Products, 2018, 111, 457-461.	5 . 2	23
49	Interphase Engineering of a Celluloseâ€Based Carbon Fiber Reinforced Composite by Applying Click Chemistry. ChemistryOpen, 2018, 7, 720-729.	1.9	10
50	Structural Characterization of the Body Frame and Spicules of a Glass Sponge. Minerals (Basel,) Tj ETQq0 0 0 rgB	T Oyerloo	:k J0 Tf 50 2:
51	CO ₂ -triggered fine tuning of electrical conductivity <i>via</i> tug-of-war between ions. New Journal of Chemistry, 2018, 42, 15528-15532.	2.8	4
52	CS2 capture in the ionic liquid 1-alkyl-3-methylimidazolium acetate: reaction mechanism and free energetics. Physical Chemistry Chemical Physics, 2018, 20, 19339-19349.	2.8	7
53	Carbon fibre reinforced cellulose-based polymers: intensifying interfacial adhesion between the fibre and the matrix. RSC Advances, 2018, 8, 22729-22736.	3.6	14
54	Dual Catalytic Activity of an Ionic Liquid in Lignin Acetylation and Deacetylation. Chemistry Letters, 2018, 47, 860-863.	1.3	16

#	Article	IF	Citations
55	Butylated lignin as a compatibilizing agent for polypropylene-based carbon fiber-reinforced plastics. Polymer Journal, 2018, 50, 997-1002.	2.7	9
56	Dimethyl sulfoxide enhances both the cellulose dissolution ability and biocompatibility of a carboxylate-type liquid zwitterion. New Journal of Chemistry, 2018, 42, 13225-13228.	2.8	31
57	Cellulose triacetate synthesis via one-pot organocatalytic transesterification and delignification of pretreated bagasse. RSC Advances, 2018, 8, 21768-21776.	3.6	30
58	A mechanistic insight into the organocatalytic properties of imidazolium-based ionic liquids and a positive co-solvent effect on cellulose modification reactions in an ionic liquid. RSC Advances, 2017, 7, 9423-9430.	3.6	41
59	Effective Dissolution of Biomass in Ionic Liquids by Irradiation of Non-Thermal Atmospheric Pressure Plasma. Australian Journal of Chemistry, 2017, 70, 731.	0.9	1
60	Efficient recovery of ionic liquid by electrodialysis in the acid hydrolysis process. Separation Science and Technology, 2017, 52, 1240-1245.	2.5	7
61	Development and evaluation of consolidated bioprocessing yeast for ethanol production from ionic liquid-pretreated bagasse. Bioresource Technology, 2017, 245, 1413-1420.	9.6	28
62	Viscosity effect of ionic liquid-assisted controlled growth of CH3NH3PbI3 nanoparticle-based planar perovskite solar cells. Organic Electronics, 2017, 48, 147-153.	2.6	30
63	lonic liquid pretreatment of bagasse improves mechanical property of bagasse/polypropylene composites. Industrial Crops and Products, 2017, 109, 158-162.	5.2	23
64	Investigation of accessibility and reactivity of cellulose pretreated by ionic liquid at high loading. Carbohydrate Polymers, 2017, 176, 365-373.	10.2	27
65	Recyclable and scalable organocatalytic transesterification of polysaccharides in a mixed solvent of 1-ethyl-3-methylimidazolium acetate and dimethyl sulfoxide. Polymer Journal, 2017, 49, 783-787.	2.7	22
66	Efficient Hydrolysis of Polysaccharides in Bagasse by <i>in Situ</i> Synthesis of an Acidic Ionic Liquid after Pretreatment. ACS Sustainable Chemistry and Engineering, 2017, 5, 708-713.	6.7	20
67	Utilization of Anaerobic Digestion Supernatant as a Nutrient Source in Microalgal Biomass Production with a Membrane Photobioreactor. Journal of Water and Environment Technology, 2017, 15, 199-206.	0.7	8
68	Nano-Structural Investigation on Cellulose Highly Dissolved in Ionic Liquid: A Small Angle X-ray Scattering Study. Molecules, 2017, 22, 178.	3.8	17
69	Efficient Hydrolysis of Lignocellulose by Acidic Ionic Liquids under Low-Toxic Condition to Microorganisms. Catalysts, 2017, 7, 108.	3.5	4
70	Design of Wall-Destructive but Membrane-Compatible Solvents. Journal of the American Chemical Society, 2017, 139, 16052-16055.	13.7	57
71	17â€fRadiation Chemistry of Ionic Liquidsâ€"Solvation Dynamics of Excess Electronâ€". Radioisotopes, 2017, 66, 531-536.	0.2	0
72	Enhanced Hydrolysis of Lignocellulosic Biomass Assisted by a Combination of Acidic Ionic Liquids and Microwave Heating. Journal of Chemical Engineering of Japan, 2016, 49, 809-813.	0.6	14

#	Article	IF	Citations
73	Anion Bridging-Induced Structural Transformation of Cellulose Dissolved in Ionic Liquid. Journal of Physical Chemistry Letters, 2016, 7, 5156-5161.	4.6	27
74	Structure and dynamics of ionic liquids: Trimethylsilylpropyl-substituted cations and bis(sulfonyl)amide anions. Journal of Chemical Physics, 2016, 145, 244506.	3.0	27
75	Fast solute diffusivity in ionic liquids with silyl or siloxane groups studied by the transient grating method. Chemical Physics, 2016, 472, 128-134.	1.9	11
76	Radiolytic yields of solvated electrons in ionic liquid and its solvation dynamics at low temperature. Radiation Physics and Chemistry, 2016, 124, 14-18.	2.8	8
77	Hydrolysis of Cellulose Using an Acidic and Hydrophobic Ionic Liquid and Subsequent Separation of Glucose Aqueous Solution from the Ionic Liquid and 5-(Hydroxymethyl)furfural. ACS Sustainable Chemistry and Engineering, 2016, 4, 3352-3356.	6.7	31
78	Radiation-induced intermediates in irradiated glassy ionic liquids at low temperature. Radiation Physics and Chemistry, 2016, 124, 26-29.	2.8	2
79	Sonocatalytic injury of cancer cells attached on the surface of a nickel–titanium dioxide alloy plate. Ultrasonics Sonochemistry, 2016, 28, 1-6.	8.2	4
80	Targeted and ultrasound-triggered cancer cell injury using perfluorocarbon emulsion-loaded liposomes endowed with cancer cell-targeting and fusogenic capabilities. Ultrasonics Sonochemistry, 2016, 28, 54-61.	8.2	21
81	Application of a Non-thermal Atmospheric Pressure Plasma Jet to the Decomposition of Salicylic Acid to Inorganic Carbon. Chemistry Letters, 2015, 44, 1473-1475.	1.3	4
82	Structural Analysis of Crystalline $R(+)$ - \hat{l} ±-Lipoic Acid- \hat{l} ±-cyclodextrin Complex Based on Microscopic and Spectroscopic Studies. International Journal of Molecular Sciences, 2015, 16, 24614-24628.	4.1	11
83	Efficient and rapid direct transesterification reactions of cellulose with isopropenyl acetate in ionic liquids. RSC Advances, 2015, 5, 72071-72074.	3.6	62
84	Transport Properties of Various Ionic Liquids During Electrodialysis. Journal of Solution Chemistry, 2015, 44, 2405-2415.	1.2	3
85	Universality of Viscosity Dependence of Translational Diffusion Coefficients of Carbon Monoxide, Diphenylacetylene, and Diphenylcyclopropenone in Ionic Liquids under Various Conditions. Journal of Physical Chemistry B, 2015, 119, 8096-8103.	2.6	29
86	Saccharification and ethanol fermentation from cholinium ionic liquid-pretreated bagasse with a different number of post-pretreatment washings. Bioresource Technology, 2015, 189, 203-209.	9.6	37
87	Ultrafast transient absorption spectrum of the room temperature Ionic liquid 1-hexyl-3-methylimidazolium bromide: Confounding effects of photo-degradation. Radiation Physics and Chemistry, 2015, 117, 78-82.	2.8	13
88	Effect of post-pretreatment washing on saccharification and co-fermentation from bagasse pretreated with biocompatible cholinium ionic liquid. Biochemical Engineering Journal, 2015, 103, 198-204.	3.6	23
89	Ionic liquid/ultrasound pretreatment and in situ enzymatic saccharification of bagasse using biocompatible cholinium ionic liquid. Bioresource Technology, 2015, 176, 169-174.	9.6	76
90	Characterization of fractionated biomass component and recovered ionic liquid during repeated process of cholinium ionic liquid-assisted pretreatment and fractionation. Chemical Engineering Journal, 2015, 259, 323-329.	12.7	69

#	Article	IF	Citations
91	Twin-peaks absorption spectra of excess electron in ionic liquids. Radiation Physics and Chemistry, 2014, 100, 32-37.	2.8	10
92	In situ near-infrared spectroscopic studies of the structural changes in polyethylene during tensile deformation. Polymer Testing, 2014, 38, 81-86.	4.8	15
93	Pretreatment of Japanese cedar by ionic liquid solutions in combination with acid and metal ion and its application to high solid loading. Biotechnology for Biofuels, 2014, 7, 120.	6.2	16
94	Microwave pretreatment of lignocellulosic material in cholinium ionic liquid for efficient enzymatic saccharification. Biochemical Engineering Journal, 2014, 90, 90-95.	3.6	42
95	EPR Evidence for a Physically Trapped Excess Electron in a Glassy Ionic Liquid. Journal of Physical Chemistry Letters, 2013, 4, 2896-2899.	4.6	13
96	Combined use of completely bio-derived cholinium ionic liquids and ultrasound irradiation for the pretreatment of lignocellulosic material to enhance enzymatic saccharification. Chemical Engineering Journal, 2013, 215-216, 811-818.	12.7	67
97	Cholinium carboxylate ionic liquids for pretreatment of lignocellulosic materials to enhance subsequent enzymatic saccharification. Biochemical Engineering Journal, 2013, 71, 25-29.	3.6	65
98	Effect of ionic liquid weight ratio on pretreatment of bamboo powder prior to enzymatic saccharification. Bioresource Technology, 2013, 128, 188-192.	9.6	48
99	Sonocatalytic–Fenton reaction for enhanced OH radical generation and its application to lignin degradation. Ultrasonics Sonochemistry, 2013, 20, 1092-1097.	8.2	57
100	Evaluation of extra- and intracellular OH radical generation, cancer cell injury, and apoptosis induced by a non-thermal atmospheric-pressure plasma jet. Journal Physics D: Applied Physics, 2013, 46, 425401.	2.8	65
101	Characterization of molecular orientation under tensile deformation by near infrared spectroscopy. E-Polymers, 2012, 12, .	3.0	1
102	In situ near-infrared spectroscopic studies of the structural changes of polyethylene during melting. Polymer Journal, 2012, 44, 162-166.	2.7	23
103	Enhanced enzymatic saccharification of kenaf powder after ultrasonic pretreatment in ionic liquids at room temperature. Bioresource Technology, 2012, 103, 259-265.	9.6	113
104	Formation of Anhydrosugars from Polysaccharides in Ionic Liquids by Microwave Irradiation. ACS Symposium Series, 2010, , 145-154.	0.5	0
105	Rate constants for the reaction of hydronium ions with hydrated electrons up to $350 {\hat A}^{\circ}$ C. Radiation Physics and Chemistry, 2010, 79, 64-65.	2.8	12
106	Electrochemical carboxylation of \hat{l} ±-chloroethylbenzene in ionic liquids compressed with carbon dioxide. Physical Chemistry Chemical Physics, 2010, 12, 1953.	2.8	41
107	Reactions of excited-state benzophenone ketyl radical in a room-temperature ionic liquid. Physical Chemistry Chemical Physics, 2010, 12, 1963.	2.8	15
108	Radiation Chemistry and Photochemistry of Ionic Liquids. , 2010, , 265-287.		3

#	Article	IF	Citations
109	Photo-degradation of imidazolium ionic liquids. Radiation Physics and Chemistry, 2009, 78, 1126-1128.	2.8	22
110	LCSTâ€type liquid–liquid and liquid–solid phase transition behaviors of hyperbranched polyglycerol bearing imidazolium salt. Journal of Polymer Science Part A, 2009, 47, 7032-7042.	2.3	20
111	Pulse radiolysis study of ion-species effects on the solvated electron in alkylammonium ionic liquids. Radiation Physics and Chemistry, 2009, 78, 1157-1160.	2.8	30
112	Photo-detrapping of solvated electrons in an ionic liquid. Radiation Physics and Chemistry, 2009, 78, 1129-1132.	2.8	13
113	Formation kinetics of levoglucosan from glucose in high temperature water. Chemical Engineering Journal, 2009, 153, 170-174.	12.7	15
114	Sizeâ€Selective Encapsulation Property of Unimolecular Reverse Micelle Consisting of Hyperbranched <scp>D</scp> â€Glucan Core and <scp>L</scp> â€Leucine Ethyl Ether Shell. Macromolecular Symposia, 2009, 279, 145-150.	0.7	8
115	Formation of Anhydroglucose in Ionic Liquids by Microwave Heating—Temperature and Chloride Ion Effects—. Chemistry Letters, 2009, 38, 1178-1179.	1.3	5
116	Kinetic Salt Effects on an Ionic Reaction in Ionic Liquid/Methanol Mixtures â€"Viscosity and Coulombic Screening Effectsâ€". Chemistry Letters, 2009, 38, 236-237.	1.3	11
117	Molar absorption coefficient and radiolytic yield of solvated electrons in diethylmethyl (2-methoxy) ammonium bis (trifluoromethanesulfonyl) imide ionic liquid. Radiation Physics and Chemistry, 2008, 77, 1244-1247.	2.8	29
118	Picosecond pulse radiolysis: Dynamics of solvated electrons in ionic liquid and geminate ion recombination in liquid alkanes. Radiation Physics and Chemistry, 2008, 77, 1233-1238.	2.8	28
119	Thermochemical transformation of glucose to 1,6-anhydroglucose in high-temperature steam. Carbohydrate Research, 2008, 343, 848-854.	2.3	33
120	Reactions of solvated electrons with imidazolium cations in ionic liquids. Radiation Physics and Chemistry, 2008, 77, 1239-1243.	2.8	53
121	Involvement of Pallidotegmental Neurons in Methamphetamine- and MK-801-Induced Impairment of Prepulse Inhibition of the Acoustic Startle Reflex in Mice: Reversal by GABAB Receptor Agonist Baclofen. Neuropsychopharmacology, 2008, 33, 3164-3175.	5.4	75
122	Reaction between Diiodide Anion Radicals in Ionic Liquidsâ€. Journal of Physical Chemistry B, 2007, 111, 4807-4811.	2.6	47
123	Recombination of the Hydrated Electron at High Temperature and Pressure in Hydrogenated Alkaline Water. Journal of Physical Chemistry A, 2007, 111, 11540-11551.	2.5	41
124	Electron Photodetachment from Iodide in Ionic Liquids through Charge-Transfer-to-Solvent Band Excitationâ€. Journal of Physical Chemistry B, 2007, 111, 4770-4774.	2.6	53
125	Regioselective Arene Hydroxylation Mediated by a (μ-Peroxo)diiron(III) Complex:  A Functional Model for Toluene Monooxygenase. Journal of the American Chemical Society, 2007, 129, 2-3.	13.7	63
126	Neural Circuits Containing Pallidotegmental GABAergic Neurons are Involved in the Prepulse Inhibition of the Startle Reflex in Mice. Biological Psychiatry, 2007, 62, 148-157.	1.3	61

#	Article	IF	Citations
127	Encapsulation–release property of amphiphilic hyperbranched d-glucan as a unimolecular reverse micelle. Polymer, 2007, 48, 1237-1244.	3.8	44
128	A unimolecular nanocapsule: Encapsulation property of amphiphilic polymer based on hyperbranched polythreitol. Polymer, 2007, 48, 4683-4690.	3.8	57
129	Temperature and density dependence of the light and heavy water ultraviolet absorption edge. Journal of Chemical Physics, 2006, 125, 104314.	3.0	35
130	Pulse Radiolysis of Supercritical Water. 3. Spectrum and Thermodynamics of the Hydrated Electron. Journal of Physical Chemistry A, 2005, 109, 1299-1307.	2.5	114
131	Reaction rates of the hydrated electron with N2O in high temperature water and potential surface of the N2Oâ^' anion. Chemical Physics Letters, 2004, 383, 445-450.	2.6	34
132	Rapid pyrolysis of wood block by microwave heating. Journal of Analytical and Applied Pyrolysis, 2004, 71, 187-199.	5.5	265
133	Application of High Energy Electron Beam to Reactions of Ions and Radicals in Supercritical Fluids. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2004, 14, 45-52.	0.0	0
134	Pulse Radiolysis of Supercritical Water. Part 1. Reactions Between Hydrophobic and Anionic Species ChemInform, 2003, 34, no.	0.0	0
135	Transient Negative Species in Supercritical Carbon Dioxide:  Electronic Spectra and Reactions of CO2 Anion Clusters. Journal of Physical Chemistry A, 2002, 106, 108-114.	2.5	25
136	Pulse Radiolysis of Supercritical Water. 1. Reactions between Hydrophobic and Anionic Speciesâ€. Journal of Physical Chemistry A, 2002, 106, 12260-12269.	2.5	56
137	Pulse Radiolysis of Supercritical Water. 2. Reaction of Nitrobenzene with Hydrated Electrons and Hydroxyl Radicalsâ€. Journal of Physical Chemistry A, 2002, 106, 12270-12279.	2.5	35
138	lonic and Neutral Species in Pulse Radiolysis of Supercritical CO2. 1. Transient Absorption Spectroscopy, Electric Field Effect, and Charge Dynamics. Journal of Physical Chemistry A, 2002, 106, 11855-11870.	2.5	25
139	Visible absorption spectra of crystal violet in supercritical ethane–methanol solution. Journal of Supercritical Fluids, 2002, 24, 153-159.	3.2	11
140	Reaction rates of the hydrated electron with NO2 \hat{a}° , NO3 \hat{a}° , and hydronium ions as a function of temperature from 125 to 380 \hat{A}° C. Chemical Physics Letters, 2002, 357, 358-364.	2.6	36
141	Radiolytically Induced Formation and Optical Absorption Spectra of Colloidal Silver Nanoparticles in Supercritical Ethane,. Journal of Physical Chemistry B, 2001, 105, 954-959.	2.6	122
142	Pulse Radiolysis Studies of Solvated Electrons in Supercritical Ethane with Methanol as Cosolventâ€. Journal of Physical Chemistry A, 2001, 105, 7236-7240.	2.5	15
143	Supercritical Fluid in Polymer Science and Technology. I. Synthesis of Cellulose Carbamate Using Supercritical Fluid Kobunshi Ronbunshu, 2001, 58, 502-506.	0.2	2
144	Temperature effect on spectrum of solvated electron formed in a mixture of supercritical ethane. Radiation Physics and Chemistry, 2001, 60, 399-404.	2.8	0

#	Article	IF	CITATIONS
145	Rapid Microwave Pyrolysis of Wood Journal of Chemical Engineering of Japan, 2000, 33, 299-302.	0.6	49
146	Design of an optical cell for pulse radiolysis of supercritical water. Review of Scientific Instruments, 2000, 71, 3345-3350.	1.3	38
147	Charged Species in the Radiolysis of Supercritical CO2â€. Journal of Physical Chemistry A, 2000, 104, 568-576.	2.5	24
148	Density dependence of the Stokes shift and solvent reorganization energy in supercritical fluids. Radiation Physics and Chemistry, 1999, 55, 579-581.	2.8	8
149	Pulse radiolytic studies of supercritical CO21Work performed under the auspices of the Office of Basic Energy Sciences, Division of Chemical Science, US–DOE under contract number W-31-109-ENG-38.1. Chemical Physics Letters, 1999, 309, 61-68.	2.6	22
150	Segmentation of plant hairy roots promotes lateral root emergence and subsequent growth. Journal of Bioscience and Bioengineering, 1999, 88, 690-692.	2.2	6
151	Spectroscopic study of 4-aminobenzophenone in supercritical CF3H and CO2: local density and Onsager's reaction cavity radius. Chemical Physics Letters, 1998, 282, 361-368.	2.6	29
152	Solvent reorganization energies measured by an electron transfer reaction in supercritical ethane. Journal of Supercritical Fluids, 1998, 13, 155-161.	3.2	4
153	The measurement of an electron transfer reaction in a non-polar supercritical fluid. Chemical Physics Letters, 1997, 264, 297-302.	2.6	30
154	Influence of ultrasound irradiation on hydrolysis of sucrose catalyzed by invertase. Enzyme and Microbial Technology, 1996, 18, 444-448.	3.2	93
155	Coupling of laminar flow heat transfer in a vertical circular tube with external free convection. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1994, 55, 103-114.	0.1	2
156	Change of longitudinal Mixing Character of Liquid in Bubble Column Due to Fluid Oscillation Kagaku Kogaku Ronbunshu, 1993, 19, 123-127.	0.3	0
157	Some Features of Combined Convection Mass Transfer for Pulsating Fluid Flow in a Pipe Kagaku Kogaku Ronbunshu, 1993, 19, 127-130.	0.3	3
158	Hydrolysis of Beef Tallow by Immobilized Lipase in a Biphasic Organic-Aqueous System Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1993, 1993, 1292-1294.	0.1	3
159	Local mass transfer from a single cylinder and tube bankds vibrating sinusoidally in a fluid at rest Journal of Chemical Engineering of Japan, 1992, 25, 678-683.	0.6	8
160	A virtual mass and a drag coefficients for an oscillating particle Journal of Chemical Engineering of Japan, 1992, 25, 683-685.	0.6	4
161	Falling Velocity of a Particle in a Sinusoidally Oscillating Fluid Kagaku Kogaku Ronbunshu, 1991, 17, 1161-1167.	0.3	2
162	Predicting the retardation velocities of a particle in a vertically oscillating fluid Kagaku Kogaku Ronbunshu, 1991, 17, 210-213.	0.3	1

#	Article	IF	CITATIONS
163	A new correlation method for the effect of vibration on forced-convection heat transfer Journal of Chemical Engineering of Japan, 1990, 23, 45-50.	0.6	33
164	Effect of vibration on forced convection mass transfer Journal of Chemical Engineering of Japan, 1989, 22, 120-124.	0.6	13
165	In-line forces on oscillating multidisc in a fluid flow Journal of Chemical Engineering of Japan, 1989, 22, 311-312.	0.6	O
166	In-line forces on oscillating bodies in a fluid flow Journal of Chemical Engineering of Japan, 1988, 21, 405-410.	0.6	6