Ying Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5638264/publications.pdf

Version: 2024-02-01

106	9,793	52	97
papers	citations	h-index	g-index
109	109	109	9430
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Photocatalytic CO ₂ Reduction with H ₂ O on TiO ₂ Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. ACS Catalysis, 2012, 2, 1817-1828.	5.5	741
2	Engineering Coexposed {001} and {101} Facets in Oxygen-Deficient TiO ₂ Nanocrystals for Enhanced CO ₂ Photoreduction under Visible Light. ACS Catalysis, 2016, 6, 1097-1108.	5 . 5	529
3	Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Applied Catalysis B: Environmental, 2010, 100, 386-392.	10.8	446
4	Unveiling Active Sites of CO ₂ Reduction on Nitrogen-Coordinated and Atomically Dispersed Iron and Cobalt Catalysts. ACS Catalysis, 2018, 8, 3116-3122.	5 . 5	405
5	CeO ₂ –TiO ₂ Catalysts for Catalytic Oxidation of Elemental Mercury in Low-Rank Coal Combustion Flue Gas. Environmental Science & Environmental Science	4.6	341
6	Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Applied Catalysis B: Environmental, 2013, 134-135, 349-358.	10.8	310
7	Understanding the Reaction Mechanism of Photocatalytic Reduction of CO2 with H2O on TiO2-Based Photocatalysts: A Review. Aerosol and Air Quality Research, 2014, 14, 453-469.	0.9	290
8	Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures. Applied Catalysis B: Environmental, 2012, 111-112, 381-388.	10.8	275
9	Spontaneous Dissociation of CO ₂ to CO on Defective Surface of Cu(I)/TiO _{2–<i>x</i>} Nanoparticles at Room Temperature. Journal of Physical Chemistry C, 2012, 116, 7904-7912.	1.5	262
10	Identification of champion transition metals centers in metal and nitrogen-codoped carbon catalysts for CO2 reduction. Applied Catalysis B: Environmental, 2018, 226, 463-472.	10.8	259
11	Bicrystalline TiO2 with controllable anatase–brookite phase content for enhanced CO2 photoreduction to fuels. Journal of Materials Chemistry A, 2013, 1, 8209.	5.2	223
12	Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels. Applied Catalysis A: General, 2011, 400, 195-202.	2.2	219
13	Development of Silica/Vanadia/Titania Catalysts for Removal of Elemental Mercury from Coal-Combustion Flue Gas. Environmental Science & Environmental Science & 2008, 42, 5304-5309.	4.6	203
14	Oxidation and capture of elemental mercury over SiO2–TiO2–V2O5 catalysts in simulated low-rank coal combustion flue gas. Chemical Engineering Journal, 2011, 169, 186-193.	6.6	185
15	Role of flue gas components in mercury oxidation over TiO2 supported MnOx-CeO2 mixed-oxide at low temperature. Journal of Hazardous Materials, 2012, 243, 117-123.	6.5	174
16	Visible-Light-Driven Photocatalytic Degradation of Organic Water Pollutants Promoted by Sulfite Addition. Environmental Science & Environmental Scienc	4.6	162
17	Pore-Edge Tailoring of Single-Atom Iron–Nitrogen Sites on Graphene for Enhanced CO ₂ Reduction. ACS Catalysis, 2020, 10, 10803-10811.	5.5	140
18	Promoting electrocatalytic CO2 reduction on nitrogen-doped carbon with sulfur addition. Applied Catalysis B: Environmental, 2019, 252, 240-249.	10.8	139

#	Article	IF	Citations
19	Ultrasonic spray pyrolysis synthesis of Ag/TiO2 nanocomposite photocatalysts for simultaneous H2 production and CO2 reduction. International Journal of Hydrogen Energy, 2012, 37, 9967-9976.	3.8	136
20	Copper and iodine co-modified TiO2 nanoparticles for improved activity of CO2 photoreduction with water vapor. Applied Catalysis B: Environmental, 2012, 123-124, 257-264.	10.8	128
21	Impact of SO2 on elemental mercury oxidation over CeO2–TiO2 catalyst. Chemical Engineering Journal, 2013, 219, 319-326.	6.6	125
22	Atomically Dispersed Iron–Nitrogen Sites on Hierarchically Mesoporous Carbon Nanotube and Graphene Nanoribbon Networks for CO ₂ Reduction. ACS Nano, 2020, 14, 5506-5516.	7.3	125
23	A review on the effects of TiO2 surface point defects on CO2 photoreduction with H2O. Journal of Materiomics, 2017, 3, 17-32.	2.8	119
24	Integrating photocatalysis and thermocatalysis to enable efficient CO2 reforming of methane on Pt supported CeO2 with Zn doping and atomic layer deposited MgO overcoating. Applied Catalysis B: Environmental, 2020, 260, 118189.	10.8	115
25	Porous microspheres of MgO-patched TiO2 for CO2 photoreduction with H2O vapor: temperature-dependent activity and stability. Chemical Communications, 2013, 49, 3664.	2.2	114
26	Magnetite–Polypyrrole Metacomposites: Dielectric Properties and Magnetoresistance Behavior. Journal of Physical Chemistry C, 2013, 117, 10191-10202.	1.5	113
27	Mechanistic Study of CO ₂ Photoreduction with H ₂ O on Cu/TiO ₂ Nanocomposites by in Situ X-ray Absorption and Infrared Spectroscopies. Journal of Physical Chemistry C, 2017, 121, 490-499.	1.5	107
28	Boosting CO2 reduction on Fe-N-C with sulfur incorporation: Synergistic electronic and structural engineering. Nano Energy, 2020, 68, 104384.	8.2	106
29	Removal of gaseous HgO using novel seaweed biomass-based activated carbon. Chemical Engineering Journal, 2019, 366, 41-49.	6.6	103
30	Integrated CO2 capture and photocatalytic conversion by a hybrid adsorbent/photocatalyst material. Applied Catalysis B: Environmental, 2015, 179, 489-499.	10.8	102
31	Preparation of microwave-activated magnetic bio-char adsorbent and study on removal of elemental mercury from flue gas. Science of the Total Environment, 2019, 697, 134049.	3.9	101
32	Role of Moisture in Adsorption, Photocatalytic Oxidation, and Reemission of Elemental Mercury on a SiO2â°'TiO2Nanocomposite. Environmental Science & E	4.6	100
33	Sulfur-infiltrated porous carbon microspheres with controllable multi-modal pore size distribution for high energy lithium–sulfur batteries. Nanoscale, 2014, 6, 882-888.	2.8	97
34	Efficient CO ₂ Electroreduction by Highly Dense and Active Pyridinic Nitrogen on Holey Carbon Layers with Fluorine Engineering. ACS Catalysis, 2019, 9, 2124-2133.	5.5	97
35	Mercury removal from flue gas by magnetic iron-copper oxide modified porous char derived from biomass materials. Fuel, 2019, 256, 115977.	3.4	96
36	Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2–TiO2 nanocomposite. Fuel Processing Technology, 2008, 89, 567-573.	3.7	94

#	Article	IF	CITATIONS
37	Photocatalytic conversion of CO2 and H2O to fuels by nanostructured Ce–TiO2/SBA-15 composites. Catalysis Science and Technology, 2012, 2, 2558.	2.1	94
38	CO ₂ photoreduction with H ₂ O vapor by porous MgO–TiO ₂ microspheres: effects of surface MgO dispersion and CO ₂ adsorption–desorption dynamics. Catalysis Science and Technology, 2014, 4, 1539-1546.	2.1	91
39	The effect of coordination environment on the activity and selectivity of single-atom catalysts. Coordination Chemistry Reviews, 2022, 461, 214493.	9.5	91
40	A Density Functional Theory and Experimental Study of CO ₂ Interaction with Brookite TiO ₂ . Journal of Physical Chemistry C, 2012, 116, 19755-19764.	1.5	84
41	Novel titanium dioxide/iron (III) oxide/graphene oxide photocatalytic membrane for enhanced humic acid removal from water. Chemical Engineering Journal, 2016, 302, 633-640.	6.6	79
42	A review on application of cerium-based oxides in gaseous pollutant purification. Separation and Purification Technology, 2020, 250, 117181.	3.9	79
43	Kinetics of mercury oxidation in the presence of hydrochloric acid and oxygen over a commercial SCR catalyst. Chemical Engineering Journal, 2013, 220, 53-60.	6.6	76
44	Atomic-level active sites of efficient imidazolate framework-derived nickel catalysts for CO ₂ reduction. Journal of Materials Chemistry A, 2019, 7, 26231-26237.	5.2	72
45	Silver-incorporated bicrystalline (anatase/brookite) TiO2 microspheres for CO2 photoreduction with water in the presence of methanol. Applied Catalysis A: General, 2013, 467, 474-482.	2.2	70
46	Photocatalytic degradation of phenol in water under simulated sunlight by an ultrathin MgO coated Ag/TiO2 nanocomposite. Chemosphere, 2019, 216, 1-8.	4.2	68
47	CO ₂ Reduction by Plasmonic Au Nanoparticle-Decorated TiO ₂ Photocatalyst with an Ultrathin Al ₂ O ₃ Interlayer. Journal of Physical Chemistry C, 2018, 122, 18949-18956.	1.5	66
48	Atomic layer deposition enabled MgO surface coating on porous TiO2 for improved CO2 photoreduction. Applied Catalysis B: Environmental, 2018, 238, 274-283.	10.8	63
49	Self-growth-templating synthesis of 3D N,P,Co-doped mesoporous carbon frameworks for efficient bifunctional oxygen and carbon dioxide electroreduction. Journal of Materials Chemistry A, 2017, 5, 13104-13111.	5.2	62
50	A review on adsorption-enhanced photoreduction of carbon dioxide by nanocomposite materials. Advanced Composites and Hybrid Materials, 2018, 1, 6-31.	9.9	58
51	Interfacially reinforced carbon fiber silicone resin via constructing functional nano-structural silver. Composites Science and Technology, 2019, 181, 107689.	3.8	58
52	A review on removal of mercury from flue gas utilizing existing air pollutant control devices (APCDs). Journal of Hazardous Materials, 2022, 427, 128132.	6.5	58
53	Enhancing photocatalytic CO2 reduction by coating an ultrathin Al2O3 layer on oxygen deficient TiO2 nanorods through atomic layer deposition. Applied Surface Science, 2017, 404, 49-56.	3.1	55
54	In situ biomineralization-constructed superhydrophilic and underwater superoleophobic PVDF-TiO2 membranes for superior antifouling separation of oil-in-water emulsions. Journal of Membrane Science, 2021, 622, 119030.	4.1	55

#	Article	IF	CITATIONS
55	A Novel Photoâ€thermochemical Approach for Enhanced Carbon Dioxide Reforming of Methane. ChemCatChem, 2018, 10, 940-945.	1.8	54
56	Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers. Fuel, 2006, 85, 204-212.	3.4	52
57	A novel N,Fe-Decorated carbon nanotube/carbon nanosheet architecture for efficient CO2 reduction. Electrochimica Acta, 2018, 273, 154-161.	2.6	50
58	Synthesis of novel MgAl layered double oxide grafted TiO ₂ cuboids and their photocatalytic activity on CO ₂ reduction with water vapor. Catalysis Science and Technology, 2015, 5, 3288-3295.	2.1	47
59	Novel anti-fouling Fe2O3/TiO2 nanowire membranes for humic acid removal from water. Chemical Engineering Journal, 2015, 271, 180-187.	6.6	45
60	Enhanced disinfection of Escherichia coli and bacteriophage MS2 in water using a copper and silver loaded titanium dioxide nanowire membrane. Frontiers of Environmental Science and Engineering, 2016, 10, 1.	3.3	43
61	Novel superhydrophilic antifouling PVDF-BiOCl nanocomposite membranes fabricated via a modified blending-phase inversion method. Separation and Purification Technology, 2021, 254, 117656.	3.9	40
62	Removal of Elemental Mercury from Flue Gas Using Microwave/Ultrasound-Activated Ce–Fe Magnetic Porous Carbon Derived from Biomass Straw. Energy & Samp; Fuels, 2019, 33, 8394-8402.	2.5	39
63	Membrane distillation coupled with a novel two-stage pretreatment process for petrochemical wastewater treatment and reuse. Separation and Purification Technology, 2019, 224, 23-32.	3.9	38
64	Kinetic Study for Photocatalytic Oxidation of Elemental Mercury on a SiO2–TiO2 Nanocomposite. Environmental Engineering Science, 2007, 24, 3-12.	0.8	37
65	Giant magnetoresistance in non-magnetic phosphoric acid doped polyaniline silicon nanocomposites with higher magnetic field sensing sensitivity. Physical Chemistry Chemical Physics, 2013, 15, 10866.	1.3	36
66	A novel synthesis of oleophylic Fe2O3/polystyrene fibers by \hat{I}^3 -Ray irradiation for the enhanced photocatalysis of 4-chlorophenol and 4-nitrophenol degradation. Journal of Hazardous Materials, 2019, 379, 120806.	6.5	35
67	Facile Integration of Hierarchical Pores and N,P-Codoping in Carbon Networks Enables Efficient Oxygen Reduction Reaction. Electrochimica Acta, 2017, 238, 375-383.	2.6	34
68	ZnO-CoO Nanoparticles Encapsulated in 3D Porous Carbon Microspheres for High-performance Lithium-Ion Battery Anodes. Electrochimica Acta, 2014, 135, 224-231.	2.6	32
69	Synthesis of Carbon-TiO2 Nanocomposites with Enhanced Reversible Capacity and Cyclic Performance as Anodes for Lithium-Ion Batteries. Electrochimica Acta, 2015, 155, 288-296.	2.6	32
70	One-Step Chemical Vapor Deposition Synthesis of Hierarchical Ni and N Co-Doped Carbon Nanosheet/Nanotube Hybrids for Efficient Electrochemical CO ₂ Reduction at Commercially Viable Current Densities. ACS Catalysis, 2021, 11, 10333-10344.	5.5	32
71	CO2 photoreduction with water vapor by Ti-embedded MgAl layered double hydroxides. Journal of CO2 Utilization, 2016, 15, 15-23.	3.3	30
72	Efficient oil/water separation by a durable underwater superoleophobic mesh membrane with TiO2 coating via biomineralization. Separation and Purification Technology, 2019, 222, 35-44.	3.9	30

#	Article	IF	CITATIONS
73	Mercury Emissions Control in Coal Combustion Systems Using Potassium Iodide: Bench-Scale and Pilot-Scale Studies. Energy & Energy	2.5	29
74	Kinetic modeling of mercury oxidation by chlorine over CeO2–TiO2 catalysts. Fuel, 2013, 113, 726-732.	3.4	28
75	Photocatalytic CO2 reduction on porous TiO2 synergistically promoted by atomic layer deposited MgO overcoating and photodeposited silver nanoparticles. Catalysis Today, 2020, 339, 328-336.	2.2	28
76	FeOOH and Fe2O3 co-grafted TiO2 photocatalysts for bisphenol A degradation in water. Catalysis Communications, 2017, 97, 125-129.	1.6	27
77	Atomic layer deposited TiO2 ultrathin layer on Ag_ZnO nanorods for stable and efficient photocatalytic degradation of RhB. Advanced Composites and Hybrid Materials, 2018, 1, 404-413.	9.9	27
78	Highly Efficient Nickel, Iron, and Nitrogen Codoped Carbon Catalysts Derived from Industrial Waste Petroleum Coke for Electrochemical CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 8840-8847.	3.2	26
79	Flower-like Bismuth Metal-Organic Frameworks Grown on Carbon Paper as a Free-Standing Electrode for Efficient Electrochemical Sensing of Cd2+ and Pb2+ in Water. Engineered Science, 2018, , .	1.2	26
80	NANOWASTES AND THE ENVIRONMENT: USING MERCURY AS AN EXAMPLE POLLUTANT TO ASSESS THE ENVIRONMENTAL FATE OF CHEMICALS ADSORBED ONTO MANUFACTURED NANOMATERIALS. Environmental Toxicology and Chemistry, 2008, 27, 808.	2.2	24
81	Mesoporous TiO ₂ â€"BiOBr microspheres with tailorable adsorption capacities for photodegradation of organic water pollutants: probing adsorptionâ€"photocatalysis synergy by combining experiments and kinetic modeling. Environmental Science: Water Research and Technology, 2019. 5. 769-781.	1.2	22
82	An integrated electrocoagulation $\hat{a}\in$ Electrocatalysis water treatment process using stainless steel cathodes coated with ultrathin TiO2 nanofilms. Chemosphere, 2020, 254, 126776.	4.2	21
83	Superparamagnetic iron oxide-enclosed hollow gold nanostructure with tunable surface plasmon resonances to promote near-infrared photothermal conversion. Advanced Composites and Hybrid Materials, 2022, 5, 2387-2398.	9.9	21
84	Energy Recycling by Co-Combustion of Coal and Recovered Paint Solids from Automobile Paint Operations. Journal of the Air and Waste Management Association, 2009, 59, 553-559.	0.9	20
85	Probing the Origin of Photocatalytic Effects in Photothermochemical Dry Reforming of Methane on a Pt/CeO ₂ Catalyst. Journal of Physical Chemistry C, 2021, 125, 18684-18692.	1.5	17
86	Superhydrophobic Electrospun PVDF Membranes with Silanization and Fluorosilanization Co-functionalized CNTs for Improved Direct Contact Membrane Distillation. Engineered Science, 2020,	1.2	17
87	Degradation of Hazardous Organics via Cathodic Flow-through Process Using a Spinel FeCo2O4/CNT Decorated Stainless-Steel Mesh. ES Materials & Manufacturing, 2021, , .	1.1	16
88	Thermal stability and flammability of cotton fabric with TiO2 coatings based on biomineralization. Materials Chemistry and Physics, 2022, 282, 125986.	2.0	16
89	Mercury Capture by Nano-Structured Titanium Dioxide Sorbent during Coal Combustion: Lab-Scale to Pilot-Scale Studies. Aerosol and Air Quality Research, 2009, 9, 394-403.	0.9	15
90	Syngas production at a near-unity H ₂ /CO ratio from photo-thermo-chemical dry reforming of methane on a Pt decorated Al ₂ O ₃ –CeO ₂ catalyst. Journal of Materials Chemistry A, 2022, 10, 7896-7910.	5.2	15

#	Article	IF	CITATIONS
91	Simulated solar light-driven photocatalytic degradation of trichloroethylene in water using BiOBr promoted by sulfite addition. Environmental Sciences Europe, 2020, 32, .	2.6	14
92	Water wave vibration-promoted solar evaporation with super high productivity. Nano Energy, 2022, 92, 106745.	8.2	14
93	Nitrogen Coordinated Single Atomic Metals Supported on Nanocarbons: A New Frontier in Electrocatalytic CO2 Reduction. Engineered Science, 2018, , .	1.2	13
94	Removal of Waterborne Particles by Electrofiltration: Pilot-Scale Testing. Environmental Engineering Science, 2009, 26, 1795-1803.	0.8	11
95	MgAl-layered double hydroxide flower arrays grown on carbon paper for efficient electrochemical sensing of nitrite. Journal of Electroanalytical Chemistry, 2019, 855, 113632.	1.9	11
96	Elucidating the Role of Dissolved Organic Matter and Sunlight in Mediating the Formation of Ag–Au Bimetallic Alloy Nanoparticles in the Aquatic Environment. Environmental Science & Environmental	4.6	11
97	Feasibility study of flowback/produced water treatment using direct-contact membrane distillation. Desalination and Water Treatment, 2016, 57, 21314-21327.	1.0	10
98	Metalâ€Organic Framework MILâ€125 Derived Mg ²⁺ â€Doped Mesoporous TiO ₂ for Photocatalytic CO ₂ Reduction. ChemPhotoChem, 2021, 5, 79-89.	1.5	8
99	Photocatalytic reduction of chlorate in aqueous TiO2 suspension with hole scavenger under simulated solar light. Emergent Materials, 2021, 4, 435-446.	3.2	7
100	A Sustainable Synthesis of Nickel-Nitrogen-Carbon Catalysts for Efficient Electrochemical CO2 Reduction to CO. ES Materials & Manufacturing, 2021, , .	1.1	7
101	Response to Comment on "Visible-Light-Driven Photocatalytic Degradation of Organic Water Pollutants Promoted by Sulfite Addition― Environmental Science & Technology, 2018, 52, 1677-1678.	4.6	6
102	Introducing Engineered Science. Engineered Science, 2018, , .	1.2	6
103	Integrating solar steam generation with electrocatalysis to achieve simultaneous fouling–resistant desalination and accelerated organics degradation. Desalination, 2022, 532, 115763.	4.0	5
104	Efficient Photothermochemical Dry Reforming of Methane over Ni Supported on ZrO2 with CeO2 Incorporation. Catalysis Today, 2022, , .	2.2	5
105	Preface to Special Issue - CO2 Capture, Sequestration, Conversion and Utilization. Aerosol and Air Quality Research, 2014, 14, 451-452.	0.9	2
106	Thin Film Materials and Devices. ES Materials & Manufacturing, 2020, , .	1.1	1