Tomasz R Sosnowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5638171/publications.pdf Version: 2024-02-01

TOMASZ P SOSNOWSKI

#	Article	IF	CITATIONS
1	Jak ograniczyć Å›lad wÄ™glowy inhalatorów ciÅ›nieniowych dozujÄcych ?. Alergoprofil, 2022, 18, 14-20.	0.1	0
2	In silico evaluation of particle transport and deposition in the airways of individual patients with chronic obstructive pulmonary disease. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 174, 10-19.	4.3	17
3	The Optimal Diameter of the Droplets of a High-Viscosity Liquid Containing Solid State Catalyst Particles. Energies, 2022, 15, 3937.	3.1	5
4	Inhaled aerosols: Their role in COVID-19 transmission, including biophysical interactions in the lungs. Current Opinion in Colloid and Interface Science, 2021, 54, 101451.	7.4	33
5	Czy preparaty propionianu flutykazonu z salmeterolem z pMDI są takie same? Doniesienie wstępne. Alergoprofil, 2021, 17, 39-44.	0.1	0
6	Impact of Inhalers Used in the Treatment of Respiratory Diseases on Global Warming. Advances in Respiratory Medicine, 2021, 89, 427-438.	1.0	9
7	PoÅ,Äczenia glikokortykosteroidu z dÅ,ugo dziaÅ,ajÄcym β2-mimetykiem w inhalatorze ciÅ›nieniowym dozujÄ – jakie, komu, kiedy?. Alergoprofil, 2021, 17, 19-26.	cym 0.1	0
8	Bioactive Betulin and PEG Based Polyanhydrides for Use in Drug Delivery Systems. International Journal of Molecular Sciences, 2021, 22, 1090.	4.1	11
9	WYBRANE ZAGADNIENIA FIZYKOCHEMII KOLOIDÓW W PROCESACH INHALACYJNEGO DOSTARCZANIA LEKÓW DO PÅLIC. WiadomoÅvci Chemiczne, 2021, 75, 1375-1393.	0.0	0
10	A particle technology approach toward designing dry-powder inhaler formulations for personalized medicine in respiratory diseases. Advanced Powder Technology, 2020, 31, 219-226.	4.1	37
11	Impact of physicochemical properties of nasal spray products on drug deposition and transport in the pediatric nasal cavity model. International Journal of Pharmaceutics, 2020, 574, 118911.	5.2	27
12	Interfacial rheology for the assessment of potential health effects of inhaled carbon nanomaterials at variable breathing conditions. Scientific Reports, 2020, 10, 14044.	3.3	13
13	Inhalation as a Means of Systemic Drug Delivery. Healthy Ageing and Longevity, 2020, , 327-344.	0.2	Ο
14	Experimental Analysis of the Deposition of Aerosol Droplets in the Upper Airways of Human. , 2020, , 423-429.		0
15	The thermostated medical jet nebulizer: Aerosol characteristics. International Journal of Pharmaceutics, 2019, 567, 118475.	5.2	9
16	Interactions of Carbon Nanotubes and Carbon Nanohorns with a Model Membrane Layer and Lung Surfactant In Vitro. Journal of Nanomaterials, 2019, 2019, 1-10.	2.7	8
17	Particles and lungs - where chemical engineering meets medicine. , 2019, , .		0
18	Chemical Engineering in Biomedical Problems—Selected Applications. Lecture Notes on Multidisciplinary Industrial Engineering, 2018, , 307-318.	0.6	1

#	Article	IF	CITATIONS
19	Powder Particles and Technologies for Medicine Delivery to the Respiratory System: Challenges and Opportunities. KONA Powder and Particle Journal, 2018, 35, 122-138.	1.7	17
20	Technical challenges in obtaining an optimized powder/DPI combination for inhalation delivery of a bi-component generic drug. Journal of Drug Delivery Science and Technology, 2018, 44, 406-414.	3.0	8
21	Particles on the lung surface - physicochemical and hydrodynamic effects. Current Opinion in Colloid and Interface Science, 2018, 36, 1-9.	7.4	40
22	Self-organization of colloidal particles during drying of a droplet: Modeling and experimental study. Advanced Powder Technology, 2018, 29, 3542-3551.	4.1	16
23	Physicochemical studies of direct interactions between lung surfactant and components of electronic cigarettes liquid mixtures. Inhalation Toxicology, 2018, 30, 159-168.	1.6	38
24	Particle Size Dynamics: Toward a Better Understanding of Electronic Cigarette Aerosol Interactions With the Respiratory System. Frontiers in Physiology, 2018, 9, 853.	2.8	57
25	Adsorption and Co-Adsorption of Polyaldehyde Dextran Nanoparticles and Nonionic Surfactant at an Air–Water Interface: Potential Implications for Pulmonary Drug Delivery. Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 2017, 38, 67-77.	0.7	5
26	Zasady stosowania komór inhalacyjnych u dzieci. Pediatria Polska, 2017, 92, 288-293.	0.2	0
27	Bronchial Mucus as a Complex Fluid: Molecular Interactions and Influence of Nanostructured Particles on Rheological and Transport Properties. Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 2017, 38, 217-229.	0.7	3
28	New experimental model of pulmonary surfactant for biophysical studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 519, 27-33.	4.7	31
29	Editor's Notes. In Honour of Professor Leon Gradoń on the Occasion of His 70th Birthday. Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 2017, 38, 3-4.	0.7	0
30	Surface properties of pulmonary surfactant in the presence of metal oxide nanoparticles. Toxicology Letters, 2016, 258, S271.	0.8	0
31	Inhalation devices: from basic science to practical use, innovative vs generic products. Expert Opinion on Drug Delivery, 2016, 13, 1559-1571.	5.0	34
32	Predicted Deposition of E-Cigarette Aerosol in the Human Lungs. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2016, 29, 299-309.	1.4	64
33	Effect of clay nanoparticles on model lung surfactant: a potential marker of hazard from nanoaerosol inhalation. Environmental Science and Pollution Research, 2016, 23, 4660-4669.	5.3	39
34	Impact of selected construction elements of capsule-based dry powder inhalers on the manner of drug delivery to the lungs. Pediatria I Medycyna Rodzinna, 2016, 12, 466-470.	0.1	1
35	Selected Engineering and Physicochemical Aspects of Systemic Drug Delivery by Inhalation. Current Pharmaceutical Design, 2016, 22, 2453-2462.	1.9	15
36	The Influence of Functional Carrier Particles (FCPs) on the Molecular Transport Rate Through the Reconstructed Bronchial Mucus: In Vitro Studies. Transport in Porous Media, 2015, 106, 439-454.	2.6	11

#	Article	IF	CITATIONS
37	Preparation and Characterization of Biocompatible Polymer Particles as Potential Nanocarriers for Inhalation Therapy. International Journal of Polymer Science, 2015, 2015, 1-8.	2.7	17
38	Dynamic tensiometry studies on interactions of novel therapeutic inhalable powders with model pulmonary surfactant at the air–water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480, 149-158.	4.7	18
39	The effect of shear and extensional viscosities on atomization of Newtonian and non-Newtonian fluids in ultrasonic inhaler. International Journal of Pharmaceutics, 2015, 485, 41-49.	5.2	24
40	Nanosized and Nanostructured Particles in Pulmonary Drug Delivery. Journal of Nanoscience and Nanotechnology, 2015, 15, 3476-3487.	0.9	15
41	Depozycja donosowych preparatów glikokortykosteroidów – badania wstępne. Otolaryngologia Polska, 2015, 69, 36-40.	0.6	4
42	Formation of particles for dry powder inhalers. Advanced Powder Technology, 2014, 25, 43-55.	4.1	90
43	Aerosolized Albuterol Sulfate Delivery under Neonatal Ventilatory Conditions: In Vitro Evaluation of a Novel Ventilator Circuit Patient Interface Connector. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2014, 27, 58-65.	1.4	20
44	Fluidization and break-up of powder particle aggregates during constant and pulsating flow in converging nozzles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 905-911.	4.7	11
45	Alteration of biophysical activity of pulmonary surfactant by aluminosilicate nanoparticles. Inhalation Toxicology, 2013, 25, 77-83.	1.6	31
46	Metoda badania wpÅ,ywu nanoczÄstek na wÅ,aÅ›ciwoÅ›ci powierzchniowe monowarstwy gÅ,ównego skÅ,adnika surfaktantu pÅ,ucnego (DPPC) w ukÅ,adzie wagi Langmuira-Wilhelmy'ego. Podstawy I Metody Oceny Åšrodowiska Pracy, 2013, 29, 143-153.	0.0	0
47	Alteration of Surface Properties of Dipalmitoyl Phosphatidylcholine by Benzo[<l>a</l>]pyrene: A Model of Pulmonary Effects of Diesel Exhaust Inhalation. Journal of Biomedical Nanotechnology, 2012, 8, 818-825.	1.1	25
48	Conception, preparation and properties of functional carrier particles for pulmonary drug delivery. International Journal of Pharmaceutics, 2012, 433, 51-59.	5.2	38
49	Effects of Process Variables on the Properties of Spray-Dried Mannitol and Mannitol/Disodium Cromoglycate Powders Suitable for Drug Delivery by Inhalation. Industrial & Engineering Chemistry Research, 2011, 50, 13922-13931.	3.7	30
50	Relation between Neonatal Endotracheal (ET) Tube Size and Aerosol Penetration- Computational Fluid Dynamic Study (CFD). Pediatric Research, 2011, 70, 531-531.	2.3	0
51	Short- and mid-term adsorption behaviour of Quillaja Bark Saponin and its mixtures with lysozyme. Food Hydrocolloids, 2011, 25, 687-693.	10.7	61
52	Interactions of Benzo[<italic>a</italic>]pyrene and Diesel Exhaust Particulate Matter with the Lung Surfactant System. Annals of Occupational Hygiene, 2011, 55, 329-38.	1.9	19
53	Importance of airway geometry and respiratory parameters variability for particle deposition in the human respiratory tract. Journal of Thoracic Disease, 2011, 3, 153-5.	1.4	6
54	Modification of inhalable powders by pulmonary surfactant components adsorbed on droplets during spray-drying process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 365, 56-61.	4.7	14

Tomasz R Sosnowski

#	Article	IF	CITATIONS
55	Aerosol Generation and Identification for Model Studies of Particle–Lung Interactions. International Journal of Occupational Safety and Ergonomics, 2010, 16, 41-48.	1.9	3
56	Inhalation and Deposition of Nanoparticles: Fundamentals, Phenomenology and Practical Aspects. , 2010, , 113-144.		1
57	Turbulent flow energy for aerosolization of powder particles. Journal of Aerosol Science, 2008, 39, 113-126.	3.8	27
58	Deposition of Fractal-Like Aerosol Aggregates in a Model of Human Nasal Cavity. Inhalation Toxicology, 2006, 18, 725-731.	1.6	25
59	Dynamics of Oropharyngeal Aerosol Transport and Deposition With the Realistic Flow Pattern. Inhalation Toxicology, 2006, 18, 773-780.	1.6	39
60	Mechanims of Aerosol Particle Deposition in the Oro-Pharynx Under Non-Steady Airflow. Annals of Occupational Hygiene, 2006, 51, 19-25.	1.9	29
61	Is the cell retention by MF membrane absolutely safe?a hypothetical model for cell deformation in a membrane pore. Journal of Membrane Science, 2005, 250, 135-140.	8.2	18
62	COMPARISON OF THE PRESSURE DROP AND AEROSOL DEPOSITION EFFICIENCY IN A NASO-ORO-PHARYNGEAL CAST AND THE USP INDUCTION PORT. Journal of Aerosol Science, 2004, 35, S1131-S1132.	3.8	0
63	A CANINE MODEL FOR PRODUCTION OF SEVERE UNILATERAL PANACINAR EMPHYSEMA. Experimental Lung Research, 2004, 30, 319-332.	1.2	12
64	Interaction of Deposited Aerosol Particles with the Alveolar Liquid Layer. , 2003, , 205-216.		9
65	Resuspension of Powders and Deposition of Aerosol Particles in the Upper Human Airways. , 2003, , 123-137.		2
66	Mass transfer through the gas-liquid interface at the presence of adsorbed active phospholipid monolayer. Studies in Surface Science and Catalysis, 2001, 133, 283-288.	1.5	1
67	Deactivation of the Pulmonary Surfactant Dynamics by Toxic Aerosols and Gases. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2001, 14, 455-466.	1.2	25
68	Application of a Fibrous Electrostatic Filterfor Treatment of Diesel Exhaust. International Journal of Occupational Safety and Ergonomics, 2000, 6, 321-333.	1.9	0
69	Theoretical consideration on immediate interactions between inhaled particles and the pulmonary surfactant. Journal of Aerosol Science, 2000, 31, 498-499.	3.8	3
70	Dynamic analysis of the process of an aerosol particle deposition onto an extracellular lining layer in the human lung. Journal of Aerosol Science, 2000, 31, 500-501.	3.8	7
71	Influence of Insoluble Aerosol Deposits on the Surface Activity of the Pulmonary Surfactant: A Possible Mechanism of Alveolar Clearance Retardation?. Aerosol Science and Technology, 2000, 32, 52-60.	3.1	35
72	Assessment of the Pulmonary Toxicity of Inhaled Gases and Particles With Physicochemical Methods. International Journal of Occupational Safety and Ergonomics, 1999, 5, 431-447.	1.9	11

#	Article	IF	CITATIONS
73	Pulse Nebulization in Pneumatic Devices. International Journal of Occupational Safety and Ergonomics, 1999, 5, 31-42.	1.9	1
74	Experimental Evaluation of the Importance of the Pulmonary Surfactant for Oxygen Transfer Rate in Human Lungs. International Journal of Occupational Safety and Ergonomics, 1998, 4, 391-409.	1.9	13
75	Removal of soot particles from Diesel exhaust. Journal of Aerosol Science, 1996, 27, S705-S706.	3.8	8
76	Experimental and Theoretical Investigations of Transport Properties of DPPC Monolayer. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 1996, 9, 357-367.	1.2	24
77	Transport of aerosol deposits at the active surface of liquid layer. Journal of Aerosol Science, 1995, 26, S541-S542.	3.8	2
78	Evolution of droplet size distribution in selected nebulizers. Physicochemical Problems of Mineral Processing, 0, , 32-40.	0.4	4