Min Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5638099/publications.pdf

Version: 2024-02-01

794141 623188 1,134 20 14 19 citations h-index g-index papers 1035 20 20 20 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	Compressive stress-strain relationship for stressed concrete at high temperatures. Fire Safety Journal, 2022, 130, 103576.	1.4	7
2	An exploratory study on using red mud waste as a replacement for fly ash to prepare Engineered Cementitious Composites. Construction and Building Materials, 2022, 342, 127900.	3.2	13
3	Influence of steel slag on the properties of alkali-activated fly ash and blast-furnace slag based fiber reinforced composites. Cement and Concrete Composites, 2021, 116, 103875.	4.6	29
4	Pore Size Distribution of Cement Based Materials Determined by Dynamic Water Vapor Sorption and Low Temperature Calorimetry. RILEM Bookseries, 2021, , 355-367.	0.2	0
5	Properties of polyvinyl alcohol fiber reinforced fly ash based Engineered Geopolymer Composites with zeolite replacement. Construction and Building Materials, 2020, 231, 117161.	3.2	33
6	Microbiologically induced corrosion of concrete in sewer structures: A review of the mechanisms and phenomena. Construction and Building Materials, 2020, 239, 117813.	3.2	77
7	Development of green binder systems based on flue gas desulfurization gypsum and fly ash incorporating slag or steel slag powders. Construction and Building Materials, 2020, 265, 120275.	3.2	30
8	Mechanical strengths and durability properties of pervious concretes with blended steel slag and natural aggregate. Journal of Cleaner Production, 2020, 271, 122590.	4.6	53
9	Current understanding on microbiologically induced corrosion of concrete in sewer structures: a review of the evaluation methods and mitigation measures. Construction and Building Materials, 2020, 247, 118539.	3.2	44
10	Feasibility study on using incineration fly ash from municipal solid waste to develop high ductile alkali-activated composites. Journal of Cleaner Production, 2020, 254, 120168.	4. 6	53
11	Development and characterization of fly ash based PVA fiber reinforced Engineered Geopolymer Composites incorporating metakaolin. Cement and Concrete Composites, 2020, 108, 103521.	4.6	56
12	Self-healing of Engineered Geopolymer Composites prepared by fly ash and metakaolin. Cement and Concrete Research, 2019, 125, 105895.	4.6	60
13	Impact of sample crushing on porosity characterization of hardened cement pastes by low temperature calorimetry: Comparison of powder and cylinder samples. Thermochimica Acta, 2018, 665, 11-19.	1.2	13
14	Influence of frost damage and sample preconditioning on the porosity characterization of cement based materials using low temperature calorimetry. Thermochimica Acta, 2015, 607, 30-38.	1.2	10
15	Determination of ice content in hardened concrete by low-temperature calorimetry. Journal of Thermal Analysis and Calorimetry, 2014, 115, 1335-1351.	2.0	21
16	Application of water vapor sorption measurements for porosity characterization of hardened cement pastes. Construction and Building Materials, 2014, 66, 621-633.	3.2	26
17	A study of the water vapor sorption isotherms of hardened cement pastes: Possible pore structure changes at low relative humidity and the impact of temperature on isotherms. Cement and Concrete Research, 2014, 56, 97-105.	4.6	54
18	Impact of sample saturation on the detected porosity of hardened concrete using low temperature calorimetry. Thermochimica Acta, 2014, 580, 66-78.	1.2	26

#	Article	IF	CITATIONS
19	A preliminary study of the influence of ions in the pore solution of hardened cement pastes on the porosity determination by low temperature calorimetry. Thermochimica Acta, 2014, 589, 215-225.	1.2	8
20	A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Construction and Building Materials, 2012, 28, 571-583.	3.2	521