Michael A Gray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5637815/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of CFTR in epithelial physiology. Cellular and Molecular Life Sciences, 2017, 74, 93-115.	5.4	282
2	Secretin-regulated chloride channel on the apical plasma membrane of pancreatic duct cells. Journal of Membrane Biology, 1988, 105, 131-142.	2.1	186
3	Dynamic Regulation of CFTR Bicarbonate Permeability by [Clâ^']i and Its Role in Pancreatic Bicarbonate Secretion. Gastroenterology, 2010, 139, 620-631.	1.3	172
4	Airway surface liquid homeostasis in cystic fibrosis: pathophysiology and therapeutic targets. Thorax, 2016, 71, 284-287.	5.6	127
5	Regulation of Murine Airway Surface Liquid Volume by CFTR and Ca2+-activated Clâ^' Conductances. Journal of General Physiology, 2002, 120, 407-418.	1.9	112
6	Effects of bile acids on pancreatic ductal bicarbonate secretion in guinea pig. Gut, 2008, 57, 1102-1112.	12.1	109
7	Development of Substituted Benzo[c]quinolizinium Compounds as Novel Activators of the Cystic Fibrosis Chloride Channel. Journal of Biological Chemistry, 1999, 274, 27415-27425.	3.4	102
8	Novel Role for Pendrin in Orchestrating Bicarbonate Secretion in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)-expressing Airway Serous Cells. Journal of Biological Chemistry, 2011, 286, 41069-41082.	3.4	92
9	CFTR: A New Horizon in the Pathomechanism and Treatment of Pancreatitis. Reviews of Physiology, Biochemistry and Pharmacology, 2016, 170, 37-66.	1.6	82
10	Characterization of vectorial chloride transport pathways in the human pancreatic duct adenocarcinoma cell line HPAF. American Journal of Physiology - Cell Physiology, 2003, 285, C433-C445.	4.6	77
11	Regulation of maxi-K+ channels on pancreatic duct cells by cyclic AMP-dependent phosphorylation. Journal of Membrane Biology, 1990, 115, 203-215.	2.1	74
12	Cystic fibrosis transmembrane conductance regulator currents in guinea pig pancreatic duct cells: Inhibition by bicarbonate ions. Gastroenterology, 2000, 118, 1187-1196.	1.3	64
13	Pathophysiological relevance of apical large-conductance Ca2+-activated potassium channels in pancreatic duct epithelial cells. Gut, 2011, 60, 361-369.	12.1	61
14	Volume-activated chloride currents in pancreatic duct cells. Journal of Membrane Biology, 1995, 147, 173-83.	2.1	55
15	Sendai virus-mediated CFTR gene transfer to the airway epithelium. Gene Therapy, 2007, 14, 1371-1379.	4.5	53
16	Non-selective cation channel on pancreatic duct cells. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1029, 33-42.	2.6	52
17	Elevated Paracellular Glucose Flux across Cystic Fibrosis Airway Epithelial Monolayers Is an Important Factor for Pseudomonas aeruginosa Growth. PLoS ONE, 2013, 8, e76283.	2.5	50
18	Calcium-activated chloride conductance in a pancreatic adenocarcinoma cell line of ductal origin (HPAF) and in freshly isolated human pancreatic duct cells. Pflugers Archiv European Journal of Physiology, 1998, 435, 796-803.	2.8	48

#	Article	IF	CITATIONS
19	Substance P inhibits bicarbonate secretion from guinea pig pancreatic ducts by modulating an anion exchanger. American Journal of Physiology - Cell Physiology, 2003, 285, C268-C276.	4.6	46
20	Measurement of Intracellular pH in Pancreatic Duct Cells. Pancreas, 2004, 28, 427-434.	1.1	46
21	Bicarbonate secretion: it takes two to tango. Nature Cell Biology, 2004, 6, 292-294.	10.3	45
22	Calcium-activated chloride conductance is not increased in pancreatic duct cells of CF mice. Pflugers Archiv European Journal of Physiology, 1995, 430, 26-33.	2.8	44
23	Stimulation of Mammalian G-protein-responsive Adenylyl Cyclases by Carbon Dioxide. Journal of Biological Chemistry, 2009, 284, 784-791.	3.4	43
24	A Mathematical Model of the Pancreatic Ductal Epithelium. Journal of Membrane Biology, 1996, 154, 53-67.	2.1	42
25	The Role of Pancreatic Ductal Secretion in Protection Against Acute Pancreatitis in Mice*. Critical Care Medicine, 2014, 42, e177-e188.	0.9	42
26	Murine epithelial cells: isolation and culture. Journal of Cystic Fibrosis, 2004, 3, 59-62.	0.7	41
27	Novel Regulation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Channel Gating by External Chloride. Journal of Biological Chemistry, 2004, 279, 41658-41663.	3.4	40
28	Protein kinase C mediates the inhibitory effect of substance P on HCO3â^'secretion from guinea pig pancreatic ducts. American Journal of Physiology - Cell Physiology, 2005, 288, C1030-C1041.	4.6	36
29	CFTR gene transfer to human cystic fibrosis pancreatic duct cells using a Sendai virus vector. Journal of Cellular Physiology, 2008, 214, 442-455.	4.1	35
30	Inhibition of Protein Kinase CK2 Closes the CFTR Cl ⁻ Channel, but has no Effect on the Cystic Fibrosis Mutant ΔF508-CFTR. Cellular Physiology and Biochemistry, 2009, 24, 347-360.	1.6	32
31	Choice of Differentiation Media Significantly Impacts Cell Lineage and Response to CFTR Modulators in Fully Differentiated Primary Cultures of Cystic Fibrosis Human Airway Epithelial Cells. Cells, 2020, 9, 2137.	4.1	31
32	Maxi K+ channels on human vas deferens epithelial cells. Journal of Membrane Biology, 1994, 141, 69-82.	2.1	26
33	Chloride channels and cystic fibrosis of the pancreas. Bioscience Reports, 1995, 15, 531-541.	2.4	26
34	Cigarette Smoke Exposure Induces Retrograde Trafficking of CFTR to the Endoplasmic Reticulum. Scientific Reports, 2019, 9, 13655.	3.3	26
35	Recombinant Acid Ceramidase Reduces Inflammation and Infection in Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1133-1145.	5.6	26
36	The patch-clamp and planar lipid bilayer techniques: powerful and versatile tools to investigate the CFTR Clâ^' channel. Journal of Cystic Fibrosis, 2004, 3, 101-108.	0.7	25

#	Article	IF	CITATIONS
37	CFTR Expression But Not Clâ^' Transport Is Involved in the Stimulatory Effect of Bile Acids on Apical Clâ^'/HCO3 â^' Exchange Activity in Human Pancreatic Duct Cells. Pancreas, 2009, 38, 921-929.	1.1	24
38	The Swelling-Activated Anion Conductance in the Mouse Renal Inner Medullary Collecting Duct Cell Line mIMCD-K2. Journal of Membrane Biology, 2000, 177, 51-64.	2.1	20
39	Regulation of an Outwardly Rectifying Chloride Conductance in Renal Epithelial Cells by External and Internal Calcium. Journal of Membrane Biology, 2001, 180, 49-64.	2.1	20
40	Cell Physiology of Pancreatic Ducts. , 2012, , 1399-1423.		20
41	The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Uses its C-Terminus to Regulate the A2B Adenosine Receptor. Scientific Reports, 2016, 6, 27390.	3.3	19
42	Cell Physiology of Pancreatic Ducts. , 2006, , 1371-1396.		18
43	Elevated Carbon Dioxide Blunts Mammalian cAMP Signaling Dependent on Inositol 1,4,5-Triphosphate Receptor-mediated Ca2+ Release. Journal of Biological Chemistry, 2012, 287, 26291-26301.	3.4	18
44	Hypercapnia modulates cAMP signalling and cystic fibrosis transmembrane conductance regulatorâ€dependent anion and fluid secretion in airway epithelia. Journal of Physiology, 2016, 594, 1643-1661.	2.9	18
45	Two barium binding sites on a maxi K+ channel from human vas deferens epithelial cells. Biophysical Journal, 1996, 70, 1316-1325.	0.5	17
46	Bradykinin regulation of salt transport across mouse inner medullary collecting duct epithelium involves activation of a Ca2+ -dependent Clâ^' conductance. British Journal of Pharmacology, 2000, 131, 1689-1699.	5.4	17
47	Esomeprazole Increases Airway Surface Liquid pH in Primary Cystic Fibrosis Epithelial Cells. Frontiers in Pharmacology, 2018, 9, 1462.	3.5	17
48	Primary bronchial epithelial cell culture from explanted cystic fibrosis lungs. Experimental Lung Research, 2010, 36, 101-110.	1.2	16
49	Potassium channels in pancreatic duct epithelial cells: their role, function and pathophysiological relevance. Pflugers Archiv European Journal of Physiology, 2015, 467, 625-640.	2.8	16
50	The cystic fibrosis transmembrane conductance regulator is an extracellular chloride sensor. Pflugers Archiv European Journal of Physiology, 2015, 467, 1783-1794.	2.8	16
51	Protein phosphatase 1 coordinates <scp>CFTR</scp> a€dependent airway epithelial <scp><scp>HCO₃</scp></scp> secretion by reciprocal regulation of apical and basolateral membrane <scp><lcp>Cl</lcp></scp>	5.4	15
52	exchangers. British Journal of Pharmacology, 2013, 166, 1946 1966. Characterization of H+and HCO3-transporters in CFPAC-1 human pancreatic duct cells. World Journal of Gastroenterology, 2006, 12, 885.	3.3	15
53	Increases in cytosolic Ca2+ induce dynamin- and calcineurin-dependent internalisation of CFTR. Cellular and Molecular Life Sciences, 2019, 76, 977-994.	5.4	13
54	Asymmetric block of a monovalent cation-selective channel of rabbit cardiac sarcoplasmic reticulum by succinyl choline. Journal of Membrane Biology, 1985, 88, 85-95.	2.1	12

#	Article	IF	CITATIONS
55	Characterization of Whole Cell Chloride Conductances in a Mouse Inner Medullary Collecting Duct Cell Line mIMCD-3. Journal of Membrane Biology, 1996, 149, 21-31.	2.1	12
56	Who's talking to whom? Epithelial-bacterial pathogen interactions. Molecular Microbiology, 2004, 55, 655-663.	2.5	12
57	Is CFTR-delF508 Really Absent from the Apical Membrane of the Airway Epithelium?. PLoS ONE, 2011, 6, e23226.	2.5	12
58	How to Measure CFTR-Dependent Bicarbonate Transport: From Single Channels to the Intact Epithelium. Methods in Molecular Biology, 2011, 741, 489-509.	0.9	11
59	Structural aspects of the sarcoplasmic reticulum K+ channel revealed by gallamine block. Biophysical Journal, 1988, 54, 233-239.	0.5	10
60	Properties and role of calcium-activated chloride channels in pancreatic duct cells. Current Topics in Membranes, 2002, 53, 231-256.	0.9	10
61	Acute cigarette smoke or extract exposure rapidly activates TRPA1-mediated calcium influx in primary human airway smooth muscle cells. Scientific Reports, 2021, 11, 9643.	3.3	10
62	Regulation of a hyperpolarizationâ€activated chloride current in murine respiratory ciliated cells. Journal of Physiology, 2000, 524, 353-364.	2.9	9
63	Controversies in the Role of SLC26 Anion Exchangers in Pancreatic Ductal Bicarbonate Secretion. Pancreas, 2008, 37, 232-234.	1.1	9
64	Substance P Inhibits Pancreatic Ductal Bicarbonate Secretion via Neurokinin Receptors 2 and 3 in the Guinea Pig Exocrine Pancreas. Pancreas, 2011, 40, 793-795.	1.1	9
65	CK2 is a key regulator of SLC4A2-mediated Clâ^'/HCO3 â^' exchange in human airway epithelia. Pflugers Archiv European Journal of Physiology, 2017, 469, 1073-1091.	2.8	9
66	Real-Time, Semi-Automated Fluorescent Measurement of the Airway Surface Liquid pH of Primary Human Airway Epithelial Cells. Journal of Visualized Experiments, 2019, , .	0.3	9
67	SLC26 Transporters and the Inhibitory Control of Pancreatic Ductal Bicarbonate Secretion. Novartis Foundation Symposium, 2008, , 164-176.	1.1	8
68	Clinical and molecular characterization of the R751L-CFTR mutation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L288-L300.	2.9	7
69	CyFi-MAP: an interactive pathway-based resource for cystic fibrosis. Scientific Reports, 2021, 11, 22223.	3.3	6
70	A Novel Type of Internal Barium Block of a Maxi-K+ Channel from Human Vas Deferens Epithelial Cells. Biophysical Journal, 1998, 74, 199-209.	0.5	5
71	Effects of CFTR gene silencing by siRNA or the luminal application of a CFTR activator on fluid secretion from guinea-pig pancreatic duct cells. Biochemical and Biophysical Research Communications, 2011, 410, 904-909	2.1	5
72	The anoctamin <i>(TMEM16)</i> gene family: calciumâ€activated chloride channels come of age. Experimental Physiology, 2012, 97, 175-176.	2.0	4

#	Article	IF	CITATIONS
73	CFTR is a mechanosensitive anion channel: a real stretch?. Cellscience, 2010, 7, 1-7.	0.3	4
74	Anion interactions with CFTR and consequences for HCO3- transport in secretory epithelia. Journal of Korean Medical Science, 2000, 15, S12.	2.5	3
75	Extracellular phosphate enhances the function of F508del-CFTR rescued by CFTR correctors. Journal of Cystic Fibrosis, 2021, 20, 843-850.	0.7	3
76	Renal expression of Ca2+-activated Clâ^' channels. Current Topics in Membranes, 2002, 53, 283-307.	0.9	2
77	A Voltage-Dependent Ca2+ Influx Pathway Regulates the Ca2+-Dependent Clâ^' Conductance of Renal IMCD-3 Cells. Journal of Membrane Biology, 2009, 230, 57-68.	2.1	2
78	cAMP-activated chloride channels in a MR-transfected pancreatic adenocarcinoma-derived cell line, pANS6. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1995, 1271, 315-320.	3.8	1
79	Designer pharmacotherapy for the treatment of cystic fibrosis: commentary on Zegarra-Moranet al. British Journal of Pharmacology, 2002, 137, 411-412.	5.4	1
80	The physiology of anion transport: tales of the bizarre and unexpected. Experimental Physiology, 2006, 91, 121-122.	2.0	1
81	Orchestration of Vectorial Chloride Transport by Epithelia. Advances in Molecular and Cell Biology, 2006, , 329-368.	0.1	0
82	Location, location, location: lessons from airway epithelial anion channels. Journal of Physiology, 2019, 597, 5739-5740.	2.9	0