John Ball

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5637739/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wearables for Biomechanical Performance Optimization and Risk Assessment in Industrial and Sports Applications. Bioengineering, 2022, 9, 33.	1.6	14
2	CaT: CAVS Traversability Dataset for Off-Road Autonomous Driving. IEEE Access, 2022, 10, 24759-24768.	2.6	10
3	Prediction of Student Academic Performance Using a Hybrid 2D CNN Model. Electronics (Switzerland), 2022, 11, 1005.	1.8	25
4	Hybrid Feature Extraction Model to Categorize Student Attention Pattern and Its Relationship with Learning. Electronics (Switzerland), 2022, 11, 1476.	1.8	0
5	A Generalized Fuzzy Extension Principle and Its Application to Information Fusion. IEEE Transactions on Fuzzy Systems, 2021, 29, 2726-2738.	6.5	2
6	Closing the Wearable Gap–Part IX: Validation of an Improved Ankle Motion Capture Wearable. IEEE Access, 2021, 9, 114022-114036.	2.6	5
7	Robust estimation of the number of coherent radar signal sources using deep learning. IET Radar, Sonar and Navigation, 2021, 15, 431-440.	0.9	7
8	Traversability mapping in off-road environment using semantic segmentation. , 2021, , .		5
9	Deterioration of textile vs. electronic components over time in athletic wearable devices. , 2021, , .		1
10	Engaging Students in an Automotive Autonomy Sensor Processing Class: Incorporating active learning and high-fidelity, physics-based autonomy simulation into class projects. IEEE Signal Processing Magazine, 2021, 38, 122-132.	4.6	1
11	Closing the Wearable Gap—Part VIII: A Validation Study for a Smart Knee Brace to Capture Knee Joint Kinematics. Biomechanics, 2021, 1, 152-162.	0.5	4
12	Fatigue Testing of Wearable Sensing Technologies: Issues and Opportunities. Materials, 2021, 14, 4070.	1.3	10
13	State-of-the-art review of athletic wearable technology: What 113 strength and conditioning coaches and athletic trainers from the USA said about technology in sports. International Journal of Sports Science and Coaching, 2020, 15, 26-40.	0.7	65
14	Closing the Wearable Gap-Part VII: A Retrospective of Stretch Sensor Tool Kit Development for Benchmark Testing. Electronics (Switzerland), 2020, 9, 1457.	1.8	8
15	Recursive Multi-Scale Image Deraining With Sub-Pixel Convolution Based Feature Fusion and Context Aggregation. IEEE Access, 2020, 8, 177495-177505.	2.6	2
16	A Graph-based Ant-like Approach to Optimal Path Planning. , 2020, , .		17
17	Closing the Wearable Gap—Part VI: Human Gait Recognition Using Deep Learning Methodologies. Electronics (Switzerland), 2020, 9, 796.	1.8	19
18	Wearable Stretch Sensors for Human Movement Monitoring and Fall Detection in Ergonomics. International Journal of Environmental Research and Public Health, 2020, 17, 3554.	1.2	56

John Ball

#	Article	IF	CITATIONS
19	Closing the Wearable Gap—Part V: Development of a Pressure-Sensitive Sock Utilizing Soft Sensors. Sensors, 2020, 20, 208.	2.1	17
20	Closing the Wearable Gap—Part II: Sensor Orientation and Placement for Foot and Ankle Joint Kinematic Measurements. Sensors, 2019, 19, 3509.	2.1	22
21	Machine Learning and Embedded Computing in Advanced Driver Assistance Systems (ADAS). Electronics (Switzerland), 2019, 8, 748.	1.8	11
22	Estimating the Number of Sources via Deep Learning. , 2019, , .		8
23	Closing the Wearable Gap—Part III: Use of Stretch Sensors in Detecting Ankle Joint Kinematics During Unexpected and Expected Slip and Trip Perturbations. Electronics (Switzerland), 2019, 8, 1083.	1.8	18
24	Response of GNSS-R on Dynamic Vegetated Terrain Conditions. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 1599-1611.	2.3	20
25	Rollover-Free Path Planning for Off-Road Autonomous Driving. Electronics (Switzerland), 2019, 8, 614.	1.8	11
26	Semantic Segmentation with Transfer Learning for Off-Road Autonomous Driving. Sensors, 2019, 19, 2577.	2.1	51
27	Thermal Imaging for Rapid Noninvasive On-site Insulation Diagnostics. , 2019, , .		1
28	Closing the Wearable Gap—Part IV: 3D Motion Capture Cameras Versus Soft Robotic Sensors Comparison of Gait Movement Assessment. Electronics (Switzerland), 2019, 8, 1382.	1.8	12
29	Multi-LiDAR placement, calibration, co-registration, and processing on a Subaru Forester for off-road autonomous vehicles operations. , 2019, , .		7
30	Fusion of heterogeneous bands and kernels in hyperspectral image processing. Journal of Applied Remote Sensing, 2019, 13, 1.	0.6	2
31	State-of-the-Art and Gaps for Deep Learning on Limited Training Data in Remote Sensing. , 2018, , .		6
32	Deep Learning Hyperspectral Image Classification using Multiple Class-Based Denoising Autoencoders, Mixed Pixel Training Augmentation, and Morphological Operations. , 2018, , .		4
33	Preliminary Results of a GNSS-R Simulation to Sense Canopy Parameters. , 2018, , .		1
34	Passive Tracking of the Electrochemical Impedance of a Hybrid Electric Vehicle Battery and State of Charge Estimation through an Extended and Unscented Kalman Filter. Batteries, 2018, 4, 52.	2.1	8
35	Closing the Wearable Gap: Mobile Systems for Kinematic Signal Monitoring of the Foot and Ankle. Electronics (Switzerland), 2018, 7, 117.	1.8	22
36	LiDAR and Camera Detection Fusion in a Real-Time Industrial Multi-Sensor Collision Avoidance System. Electronics (Switzerland), 2018, 7, 84.	1.8	70

John Ball

#	Article	IF	CITATIONS
37	Fusion of an Ensemble of Augmented Image Detectors for Robust Object Detection. Sensors, 2018, 18, 894.	2.1	20
38	Special Section Guest Editorial: Feature and Deep Learning in Remote Sensing Applications. Journal of Applied Remote Sensing, 2018, 11, 1.	0.6	15
39	Genetic programming based Choquet integral for multi-source fusion. , 2017, , .		6
40	Direction of arrival estimation for conformal arrays on real-world impulsive acoustic signals. Proceedings of Meetings on Acoustics, 2017, , .	0.3	1
41	Radar Angle of Arrival System Design Optimization Using a Genetic Algorithm. Electronics (Switzerland), 2017, 6, 24.	1.8	1
42	Screening Mississippi River Levees Using Texture-Based and Polarimetric-Based Features from Synthetic Aperture Radar Data. Electronics (Switzerland), 2017, 6, 29.	1.8	3
43	Radar and Radio Signal Processing. Electronics (Switzerland), 2017, 6, 64.	1.8	4
44	Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community. Journal of Applied Remote Sensing, 2017, 11, 1.	0.6	435
45	Fusion of diverse features and kernels using LP-norm based multiple kernel learning in hyperspectral image processing. , 2016, , .		2
46	Using wavelets to categorize student attention patterns. , 2016, , .		1
47	CLODD based band group selection. , 2016, , .		2
48	Runway assessment via remote sensing. , 2015, , .		3
49	Multispectral sensor design using performance measure-based hyperspectral band grouping. , 2015, , .		0
50	Measuring conflict in a multi-source environment as a normal measure. , 2015, , .		0
51	Towards automated segmentation and classification of masses in mammograms. , 2004, 2004, 1814-7.		10
52	Level set segmentation of remotely sensed hyperspectral images. , 0, , .		17
53	Adaptive hyperspectral pixel unmixing using best bands analysis and dc insensitive singular value decomposition. , 0, , .		1
54	A Kinematic Modeling Framework for Prediction of Instantaneous Status of Towing Vehicle Systems. SAE International Journal of Passenger Cars - Mechanical Systems, 0, 11, 177-190.	0.4	3