
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5637653/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Transcriptional Response of Yeast to Saline Stress. Journal of Biological Chemistry, 2000, 275, 17249-17255.	1.6	353
2	Alkali Metal Cation Transport and Homeostasis in Yeasts. Microbiology and Molecular Biology Reviews, 2010, 74, 95-120.	2.9	245
3	Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. EMBO Journal, 2001, 20, 1123-1133.	3.5	188
4	Characterization of the Calcium-mediated Response to Alkaline Stress in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 43614-43624.	1.6	180
5	The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling. Molecular Microbiology, 2002, 46, 1319-1333.	1.2	174
6	The PPZ Protein Phosphatases Are Important Determinants of Salt Tolerance in Yeast Cells. Journal of Biological Chemistry, 1995, 270, 13036-13041.	1.6	138
7	Human liver phosphatase 2A: cDNA and amino acid sequence of two catalytic subunit isotypes Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 4252-4256.	3.3	137
8	Rck2 Kinase Is a Substrate for the Osmotic Stress-Activated Mitogen-Activated Protein Kinase Hog1. Molecular and Cellular Biology, 2000, 20, 3887-3895.	1.1	132
9	The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. EMBO Journal, 2002, 21, 920-929.	3.5	125
10	Copper and Iron Are the Limiting Factors for Growth of the Yeast Saccharomyces cerevisiae in an Alkaline Environment. Journal of Biological Chemistry, 2004, 279, 19698-19704.	1.6	118
11	Two NRAMP6 Isoforms Function as Iron and Manganese Transporters and Contribute to Disease Resistance in Rice. Molecular Plant-Microbe Interactions, 2017, 30, 385-398.	1.4	116
12	Signaling Alkaline pH Stress in the Yeast Saccharomyces cerevisiae through the Wsc1 Cell Surface Sensor and the Slt2 MAPK Pathway. Journal of Biological Chemistry, 2006, 281, 39785-39795.	1.6	107
13	The yeast halotolerance determinant Hal3p is an inhibitory subunit of the Ppz1p Ser/Thr protein phosphatase. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7357-7362.	3.3	106
14	Function and Regulation of the <i>Saccharomyces cerevisiae ENA</i> Sodium ATPase System. Eukaryotic Cell, 2007, 6, 2175-2183.	3.4	105
15	Cryptococcus neoformans can form titan-like cells in vitro in response to multiple signals. PLoS Pathogens, 2018, 14, e1007007.	2.1	98
16	Disruption of iron homeostasis in <i>Saccharomyces cerevisiae</i> by high zinc levels: a genomeâ€wide study. Molecular Microbiology, 2007, 65, 521-537.	1.2	96
17	Lack of main K+ uptake systems in Saccharomyces cerevisiae cells affects yeast performance in both potassium-sufficient and potassium-limiting conditions. FEMS Yeast Research, 2010, 10, no-no.	1.1	88
18	The PPZ protein phosphatases are involved in the maintenance of osmotic stability of yeast cells. FEBS Letters, 1993, 318, 282-286.	1.3	87

#	Article	IF	CITATIONS
19	Genome-Wide Analysis of Factors Affecting Transcription Elongation and DNA Repair: A New Role for PAF and Ccr4-Not in Transcription-Coupled Repair. PLoS Genetics, 2009, 5, e1000364.	1.5	81
20	The Transcriptional Response of the Yeast Na+-ATPase ENA1 Gene to Alkaline Stress Involves Three Main Signaling Pathways*. Journal of Biological Chemistry, 2006, 281, 36632-36642.	1.6	80
21	The Yeast Ser/Thr Phosphatases Sit4 and Ppz1 Play Opposite Roles in Regulation of the Cell Cycle. Molecular and Cellular Biology, 1999, 19, 2408-2415.	1.1	78
22	Protein phosphatases in higher plants: multiplicity of type 2A phosphatases in Arabidopsis thaliana. Plant Molecular Biology, 1993, 21, 475-485.	2.0	75
23	Molecular Characterization of Ypi1, a Novel Saccharomyces cerevisiae Type 1 Protein Phosphatase Inhibitor. Journal of Biological Chemistry, 2003, 278, 47744-47752.	1.6	69
24	Regulation of ENA1 Na + -ATPase Gene Expression by the Ppz1 Protein Phosphatase Is Mediated by the Calcineurin Pathway. Eukaryotic Cell, 2003, 2, 937-948.	3.4	68
25	Coordinate responses to alkaline pH stress in budding yeast. Microbial Cell, 2015, 2, 182-196.	1.4	68
26	Sit4 Is Required for Proper Modulation of the Biological Functions Mediated by Pkc1 and the Cell Integrity Pathway inSaccharomyces cerevisiae. Journal of Biological Chemistry, 2002, 277, 33468-33476.	1.6	64
27	The effector AWR5 from the plant pathogen Ralstonia solanacearum is an inhibitor of the TOR signalling pathway. Scientific Reports, 2016, 6, 27058.	1.6	61
28	A role for protein kinase CK2 in plant development: evidence obtained using a dominantâ€negative mutant. Plant Journal, 2008, 55, 118-130.	2.8	60
29	The NH2-terminal Extension of Protein Phosphatase PPZ1 Has an Essential Functional Role. Journal of Biological Chemistry, 1996, 271, 26349-26355.	1.6	59
30	Transcriptional Profiling of the Protein Phosphatase 2C Family in Yeast Provides Insights into the Unique Functional Roles of Ptc1. Journal of Biological Chemistry, 2006, 281, 35057-35069.	1.6	59
31	Alkali-metal-cation influx and efflux systems in nonconventional yeast species. FEMS Microbiology Letters, 2011, 317, 1-8.	0.7	58
32	Polyphosphate is involved in cell cycle progression and genomic stability in <i>Saccharomyces cerevisiae</i> . Molecular Microbiology, 2016, 101, 367-380.	1.2	58
33	Type 2C Protein Phosphatases in Fungi. Eukaryotic Cell, 2011, 10, 21-33.	3.4	56
34	A new set of DNA macrochips for the yeast Saccharomyces cerevisiae: features and uses. International Microbiology, 2004, 7, 199-206.	1.1	56
35	The role of the Snf1 kinase in the adaptive response of <i>Saccharomyces cerevisiae</i> to alkaline pH stress. Biochemical Journal, 2012, 444, 39-49.	1.7	54
36	Ser/Thr protein phosphatases in fungi: structure, regulation and function. Microbial Cell, 2019, 6, 217-256.	1.4	54

#	Article	IF	CITATIONS
37	Moonlighting proteins Hal3 and Vhs3 form a heteromeric PPCDC with Ykl088w in yeast CoA biosynthesis. Nature Chemical Biology, 2009, 5, 920-928.	3.9	53
38	A Genomewide Screen for Tolerance to Cationic Drugs Reveals Genes Important for Potassium Homeostasis in Saccharomyces cerevisiae. Eukaryotic Cell, 2011, 10, 1241-1250.	3.4	53
39	Direct Regulation of Genes Involved in Glucose Utilization by the Calcium/Calcineurin Pathway. Journal of Biological Chemistry, 2008, 283, 13923-13933.	1.6	52
40	YPI1 and SDS22 Proteins Regulate the Nuclear Localization and Function of Yeast Type 1 Phosphatase Glc7. Journal of Biological Chemistry, 2007, 282, 3282-3292.	1.6	50
41	Degradation of transgenic DNA from genetically modified soya and maize in human intestinal simulations. British Journal of Nutrition, 2002, 87, 533-542.	1.2	49
42	The gene DIS2S1 is essential in Saccharomyces cerevisiae and is involved in glycogen phosphorylase activation. Current Genetics, 1991, 19, 339-342.	0.8	47
43	A Screening for High Copy Suppressors of the sit4 hal3 Synthetically Lethal Phenotype Reveals a Role for the Yeast Nha1 Antiporter in Cell Cycle Regulation. Journal of Biological Chemistry, 2001, 276, 29740-29747.	1.6	47
44	Monovalent cation transporters at the plasma membrane in yeasts. Yeast, 2019, 36, 177-193.	0.8	47
45	Maize protein kinase CK2: regulation and functionality of three β regulatory subunits. Plant Journal, 2001, 25, 365-374.	2.8	46
46	Trk1 and Trk2 Define the Major K+Transport System in Fission Yeast. Journal of Bacteriology, 2000, 182, 394-399.	1.0	45
47	Functional Characterization of the Saccharomyces cerevisiae VHS3 Gene. Journal of Biological Chemistry, 2004, 279, 34421-34430.	1.6	45
48	Integrative Responses to High pH Stress in <i>S. cerevisiae</i> . OMICS A Journal of Integrative Biology, 2010, 14, 517-523.	1.0	45
49	Role of protein phosphatases 2C on tolerance to lithium toxicity in the yeast Saccharomyces cerevisiae. Molecular Microbiology, 2006, 62, 263-277.	1.2	44
50	Impact of high pH stress on yeast gene expression: A comprehensive analysis of mRNA turnover during stress responses. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 653-664.	0.9	44
51	Improvement of biochemical methods of polyP quantification. Microbial Cell, 2017, 4, 6-15.	1.4	41
52	Identification of multicopy suppressors of cell cycle arrest at the G1-S transition inSaccharomyces cerevisiae. Yeast, 2003, 20, 157-169.	0.8	40
53	Molecular characterization of a fourth isoform of the catalytic subunit of protein phosphatase 2A from Arabidopsis thaliana. Plant Molecular Biology, 1994, 26, 523-528.	2.0	39
54	Coregulated Expression of the Na ⁺ /Phosphate Pho89 Transporter and Ena1 Na ⁺ -ATPase Allows Their Functional Coupling under High-pH Stress. Molecular and Cellular Biology, 2014, 34, 4420-4435.	1.1	39

#	Article	IF	CITATIONS
55	Structural Model of a Malonyl-CoA-binding Site of Carnitine Octanoyltransferase and Carnitine Palmitoyltransferase I. Journal of Biological Chemistry, 2002, 277, 11473-11480.	1.6	38
56	Normal Function of the Yeast TOR Pathway Requires the Type 2C Protein Phosphatase Ptc1. Molecular and Cellular Biology, 2009, 29, 2876-2888.	1.1	38
57	Novel protein phosphatases in yeast. FEBS Journal, 2002, 269, 1072-1077.	0.2	37
58	Potassium Starvation in Yeast: Mechanisms of Homeostasis Revealed by Mathematical Modeling. PLoS Computational Biology, 2012, 8, e1002548.	1.5	37
59	Saccharomyces cerevisiaegene SIT4 is involved in the control of glycogen metabolism. FEBS Letters, 1991, 279, 341-345.	1.3	36
60	The role of the protein kinase A pathway in the response to alkaline pH stress in yeast. Biochemical Journal, 2011, 438, 523-533.	1.7	36
61	Protein phosphatase CaPpz1 is involved in cation homeostasis, cell wall integrity and virulence of Candida albicans. Microbiology (United Kingdom), 2012, 158, 1258-1267.	0.7	34
62	The Cytosolic pH of Individual Saccharomyces cerevisiae Cells Is a Key Factor in Acetic Acid Tolerance. Applied and Environmental Microbiology, 2015, 81, 7813-7821.	1.4	34
63	Functional Characterization of the Yeast Ppz1 Phosphatase Inhibitory Subunit Hal3. Journal of Biological Chemistry, 2004, 279, 42619-42627.	1.6	32
64	Biochemical and Genetic Analyses of the Role of Yeast Casein Kinase 2 in Salt Tolerance. Journal of Bacteriology, 1999, 181, 6456-6462.	1.0	31
65	A Role for the Ppz Ser/Thr Protein Phosphatases in the Regulation of Translation Elongation Factor 1Bα. Journal of Biological Chemistry, 2001, 276, 14829-14834.	1.6	30
66	Regulation of Salt Tolerance in Fission Yeast by a Protein-Phosphatase-Z-Like Ser/Thr Protein Phosphatase. FEBS Journal, 1997, 250, 476-483.	0.2	29
67	Biochemical characterization of recombinant yeast PPZ1, a protein phosphatase involved in salt tolerance. FEBS Letters, 1995, 368, 39-44.	1.3	28
68	Functional mapping of the disparate activities of the yeast moonlighting protein Hal3. Biochemical Journal, 2012, 442, 357-368.	1.7	28
69	The shortâ€ŧerm response of yeast to potassium starvation. Environmental Microbiology, 2012, 14, 3026-3042.	1.8	27
70	Functional interactions between potassium and phosphate homeostasis in <scp><i>S</i></scp> <i>accharomyces cerevisiae</i> . Molecular Microbiology, 2015, 95, 555-572.	1.2	27
71	Regulation of Trkâ€dependent potassium transport by the calcineurin pathway involves the Hal5 kinase. FEBS Letters, 2010, 584, 2415-2420.	1.3	26
72	Protein phosphatase Z modulates oxidative stress response in fungi. Fungal Genetics and Biology, 2012, 49, 708-716.	0.9	26

#	Article	IF	CITATIONS
73	Mutagenesis analysis of the yeast Nha1 Na+ /H+ antiporter carboxy-terminal tail reveals residues required for function in cell cycle. FEBS Letters, 2003, 545, 239-245.	1.3	25
74	Hal4 and Hal5 Protein Kinases Are Required for General Control of Carbon and Nitrogen Uptake and Metabolism. Eukaryotic Cell, 2010, 9, 1881-1890.	3.4	25
75	Genome-wide recruitment profiling of transcription factor Crz1 in response to high pH stress. BMC Genomics, 2016, 17, 662.	1.2	25
76	Identification and molecular cloning of two homologues of protein phosphatase X from Arabidopsis thaliana. Plant Molecular Biology, 1993, 23, 1177-1185.	2.0	24
77	Functional analysis of theNeurospora crassa PZL-1 protein phosphatase by expression in budding and fission yeast. Yeast, 2001, 18, 115-124.	0.8	24
78	Wide-Ranging Effects of the Yeast Ptc1 Protein Phosphatase Acting Through the MAPK Kinase Mkk1. Genetics, 2016, 202, 141-156.	1.2	24
79	Effects of Glucose on the Activation and Translocation of Glycogen Synthase in Diabetic Rat Hepatocytes. FEBS Journal, 1994, 226, 665-671.	0.2	23
80	Gcn2p Regulates a G1/S Cell Cycle Checkpoint in Response to DNA Damage. Cell Cycle, 2007, 6, 2302-2305.	1.3	23
81	Phosphorylation and inactivation of rat hepatocyte glycogen synthase by phorbol esters and mezerein. Biochemical and Biophysical Research Communications, 1986, 134, 113-119.	1.0	22
82	The yeast Aft2 transcription factor determines selenite toxicity by controlling the low affinity phosphate transport system. Scientific Reports, 2016, 6, 32836.	1.6	22
83	Molecular cloning and characterization of two phosphatase 2A catalytic subunit genes from Arabidopsis thaliana. Gene, 1998, 209, 105-112.	1.0	21
84	Use of theTRP1auxotrophic marker for gene disruption and phenotypic analysis in yeast: a note of warning. FEMS Yeast Research, 2008, 8, 2-5.	1.1	21
85	Protein phosphatase 2A holoenzyme and its subunits from Medicago sativa. Plant Molecular Biology, 2000, 43, 527-536.	2.0	20
86	The Ppz protein phosphatases regulate Trk-independent potassium influx in yeast. FEBS Letters, 2004, 578, 58-62.	1.3	19
87	Ptc6 Is Required for Proper Rapamycin-Induced Down-Regulation of the Genes Coding for Ribosomal and rRNA Processing Proteins in S. cerevisiae. PLoS ONE, 2013, 8, e64470.	1.1	19
88	Controlling Ser/Thr protein phosphatase PP1 activity and function through interaction with regulatory subunits. Advances in Protein Chemistry and Structural Biology, 2020, 122, 231-288.	1.0	19
89	Regulation of the Na+/K+-ATPase Ena1 Expression by Calcineurin/Crz1 under High pH Stress: A Quantitative Study. PLoS ONE, 2016, 11, e0158424.	1.1	19
90	Glycogen metabolism in aSaccharomyces cerevisiaephosphoglucose isomerase (pgi1) disruption mutant. FEBS Letters, 1992, 310, 182-186.	1.3	18

#	Article	lF	CITATIONS
91	Heterologous Expression Implicates a GATA Factor in Regulation of Nitrogen Metabolic Genes and Ion Homeostasis in the Halotolerant Yeast Debaryomyces hansenii. Eukaryotic Cell, 2006, 5, 1388-1398.	3.4	18
92	Systems Biology of Monovalent Cation Homeostasis in Yeast. Advances in Microbial Physiology, 2014, 64, 1-63.	1.0	18
93	Complex stability and dynamic subunit interchange modulates the disparate activities of the yeast moonlighting proteins Hal3 and Vhs3. Scientific Reports, 2015, 5, 15774.	1.6	18
94	Yeast Ppz1 protein phosphatase toxicity involves the alteration of multiple cellular targets. Scientific Reports, 2020, 10, 15613.	1.6	18
95	Hormonal effects on the phosphorylation of glycogen synthase in rat hepatocytes. FEBS Letters, 1984, 170, 310-314.	1.3	17
96	Identification of the two histidine residues responsible for the inhibition by malonyl-CoA in peroxisomal carnitine octanoyltransferase from rat liver. FEBS Letters, 2000, 466, 183-186.	1.3	17
97	Automated Brain Tumor Biopsy Prediction Using Single-labeling cDNA Microarrays-based Gene Expression Profiling. Diagnostic Molecular Pathology, 2009, 18, 206-218.	2.1	17
98	Benzomorphan-related compounds. Part 21. Synthesis of 7,8-benzomorphans via 2-aryl-4-piperidones. Journal of the Chemical Society Perkin Transactions 1, 1986, , 1533-1539.	0.9	16
99	Role of UEV-1A, a homologue of the tumor suppressor protein TSG101, in protection from DNA damage. FEBS Letters, 1998, 423, 49-52.	1.3	16
100	The Schizosaccharomyces pombe Pzh1 protein phosphatase regulates Na+ ion influx in a Trk1-independent fashion. FEBS Journal, 1999, 260, 31-37.	0.2	16
101	The Arabidopsis thaliana PPX/PP4 phosphatases: molecular cloning and structural organization of the genes and immunolocalization of the proteins to plastids. Plant Molecular Biology, 2000, 44, 499-511.	2.0	15
102	Sequence Homologies between Type 1 and Type 2A Protein Phosphatases. Molecular Endocrinology, 1987, 1, 745-748.	3.7	14
103	XV. Yeast sequencing reports. DNA sequence analysis of a 13 kbp fragment of the left arm of yeast chromosome XV containing seven new open reading frames. Yeast, 1995, 11, 1281-1288.	0.8	14
104	Modulation of Yeast Alkaline Cation Tolerance by Ypi1 Requires Calcineurin. Genetics, 2012, 190, 1355-1364.	1.2	14
105	Disruption and phenotypic analysis of seven ORFs from the left arm of chromosome XV ofSaccharomyces cerevisiae. , 1999, 15, 435-441.		13
106	The HAL3-PPZ1 dependent regulation of nonsense suppression efficiency in yeast and its influence on manifestation of the yeast prion-like determinant [ISP+]. Genes To Cells, 2007, 12, 435-445.	0.5	13
107	Ref2, a regulatory subunit of the yeast protein phosphatase 1, is a novel component of cation homoeostasis. Biochemical Journal, 2010, 426, 355-364.	1.7	13
108	Overexpression of budding yeast protein phosphatase Ppz1 impairs translation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118727.	1.9	13

#	Article	IF	CITATIONS
109	Inhibition by etomoxir of rat liver carnitine octanoyltransferase is produced through the co-ordinate interaction with two histidine residues. Biochemical Journal, 2000, 351, 495-502.	1.7	12
110	Development of a Predictor for Human Brain Tumors Based on Gene Expression Values Obtained from Two Types of Microarray Technologies. OMICS A Journal of Integrative Biology, 2010, 14, 157-164.	1.0	12
111	The inhibitory mechanism of Hal3 on the yeast Ppz1 phosphatase: A mutagenesis analysis. Scientific Reports, 2017, 7, 8819.	1.6	12
112	The Pzh1 protein phosphatase and the Spm1 protein kinase are involved in the regulation of the plasma membrane H+-ATPase in fission yeast. FEBS Letters, 1998, 435, 241-244.	1.3	11
113	The <i><scp>S</scp>chizosaccharomyces pombe</i> fusion gene <scp><i>hal3</i></scp> encodes three distinct activities. Molecular Microbiology, 2013, 90, 367-382.	1.2	11
114	Analysis of Two Putative Candida albicans Phosphopantothenoylcysteine Decarboxylase / Protein Phosphatase Z Regulatory Subunits Reveals an Unexpected Distribution of Functional Roles. PLoS ONE, 2016, 11, e0160965.	1.1	11
115	Central nervous system gene expression changes in a transgenic mouse model for bovine spongiform encephalopathy. Veterinary Research, 2011, 42, 109.	1.1	10
116	Degradation of transgenic DNA from genetically modified soya and maize in human intestinal simulations. British Journal of Nutrition, 2002, 87, 533-42.	1.2	10
117	Glycogen hyperaccumulation inSaccharomyces cerevisiae ras2mutant A biochemical study. FEBS Letters, 1991, 290, 38-42.	1.3	9
118	Molecular analysis of a conditional hal3 vhs3 yeast mutant links potassium homeostasis with flocculation and invasiveness. Fungal Genetics and Biology, 2013, 53, 1-9.	0.9	9
119	Development of robust discriminant equations for assessing subtypes of glioblastoma biopsies. British Journal of Cancer, 2012, 106, 1816-1825.	2.9	8
120	The wheat MAP kinase phosphatase 1 confers higher lithium tolerance in yeast. FEMS Yeast Research, 2012, 12, 774-784.	1.1	8
121	Threonine phosphorylation of rat liver glycogen synthase. Biochemical and Biophysical Research Communications, 1985, 130, 987-993.	1.0	7
122	Inhibition by etomoxir of rat liver carnitine octanoyltransferase is produced through the co-ordinate interaction with two histidine residues. Biochemical Journal, 2000, 351, 495.	1.7	7
123	Adaptation to potassium starvation of wildâ€ŧype and K + â€ŧransport mutant (trk1,2) of Saccharomyces cerevisiae : 2â€dimensional gel electrophoresisâ€based proteomic approach. MicrobiologyOpen, 2012, 1, 182-193.	1.2	7
124	Characterization of the atypical Ppz/Hal3 phosphatase system from the pathogenic fungusCryptococcus neoformans. Molecular Microbiology, 2019, 111, 898-917.	1.2	7
125	XV. Yeast sequencing reports. Sequence analysis of a 9873 bp fragment of the left arm of yeast chromosome XV that contains theARG8 andCDC33 genes, a putative riboflavin synthase beta chain gene, and four new open reading frames. Yeast, 1995, 11, 1061-1067.	0.8	6
126	Sequence analysis of a 13·4 kbp fragment from the left arm of chromosome XV reveals a malate dehydrogenase gene, a putative Ser/Thr protein kinase, the ribosomal L25 gene and four new open reading frames. Yeast, 1996, 12, 1013-1020.	0.8	6

#	Article	IF	CITATIONS
127	Lack of DNA helicase Pif1 disrupts zinc and iron homoeostasis in yeast. Biochemical Journal, 2010, 432, 595-608.	1.7	6
128	Lack of the Glc7 phosphatase regulatory subunit Ypi1 activates the morphogenetic checkpoint. International Journal of Biochemistry and Cell Biology, 2012, 44, 1862-1871.	1.2	6
129	Improving Ribosomal RNA Integrity in Surgically Resected Human Brain Tumor Biopsies. Biopreservation and Biobanking, 2016, 14, 156-164.	0.5	6
130	Mutations at the hydrophobic core affect Hal3 trimer stability, reducing its Ppz1 inhibitory capacity but not its PPCDC moonlighting function. Scientific Reports, 2018, 8, 14701.	1.6	6
131	The Toxic Effects of Ppz1 Overexpression Involve Nha1-Mediated Deregulation of K+ and H+ Homeostasis. Journal of Fungi (Basel, Switzerland), 2021, 7, 1010.	1.5	6
132	Inhibition of human calcineurin and yeast calcineurin-dependent gene expression by Jasminum humile leaf and root extracts. Journal of Ethnopharmacology, 2012, 140, 293-297.	2.0	5
133	Protein Phosphatase Ppz1 Is Not Regulated by a Hal3-Like Protein in Plant Pathogen Ustilago maydis. International Journal of Molecular Sciences, 2019, 20, 3817.	1.8	5
134	The toxic effects of yeast Ppz1 phosphatase are counteracted by subcellular relocalization mediated by its regulatory subunit Hal3. FEBS Letters, 2022, 596, 1556-1566.	1.3	5
135	Nucleotide sequence of a rat heart cDNA encoding the isotype Î ² of the catalytic subunit of protein phosphatase 2A. Nucleic Acids Research, 1989, 17, 8370-8370.	6.5	4
136	Analysis of the DNA sequence of a 15,500 bp fragment near the left telomere of chromosome XV from Saccharomyces cerevisiae reveals a putative sugar transporter, a carboxypeptidase homologue and two new open reading frames. , 1996, 12, 709-714.		4
137	Sequence analysis of a 12 801 bp fragment of the left arm of yeast chromosome XV containing a putative 6-phosphofructo-2-kinase gene, a gene for a possible glycophospholipid-anchored surface protein and six other open reading frames. Yeast, 1996, 12, 1053-1058.	0.8	4
138	Use of Tetracycline-Regulatable Promoters for Functional Analysis of Protein Phosphatases in Yeast. Methods in Enzymology, 2003, 366, 347-358.	0.4	4
139	Aequorin-expressing yeast emits light under electric control. Journal of Biotechnology, 2011, 152, 93-95.	1.9	4
140	The <i>Saccharomyces cerevisiae</i> Ptc1 protein phosphatase attenuates G2â€M cell cycle blockage caused by activation of the cell wall integrity pathway. Molecular Microbiology, 2016, 101, 671-687.	1.2	4
141	Interactions Between Monovalent Cations and Nutrient Homeostasis. Advances in Experimental Medicine and Biology, 2016, 892, 271-289.	0.8	4
142	The N-Terminal Region of Yeast Protein Phosphatase Ppz1 Is a Determinant for Its Toxicity. International Journal of Molecular Sciences, 2020, 21, 7733.	1.8	4
143	Control of glycogen synthase and phosphorylase in hepatocytes from diabetic rats. Effects of glucagon, vasopressin, and vanadate. Diabetes, 1989, 38, 793-798.	0.3	4
144	Nucleotide sequence of a rat heart cDNA encoding the isotype α of the catalytic subunit of protein phosphatase 2A. Nucleic Acids Research, 1989, 17, 8369-8369.	6.5	3

#	Article	IF	CITATIONS
145	Genomics and Metabolomics Research for Brain Tumour Diagnosis Based on Machine Learning. Lecture Notes in Computer Science, 2007, , 1012-1019.	1.0	3
146	Comparative Analysis of Type 1 and Type Z Protein Phosphatases Reveals D615 as a Key Residue for Ppz1 Regulation. International Journal of Molecular Sciences, 2022, 23, 1327.	1.8	3
147	Protein Phosphatase 2A and Protein Phosphatase X Genes in Arabidopsis thaliana. , 1998, 93, 201-212.		2
148	The Search for the Biological Function of Novel Yeast Ser/Thr Phosphatases. , 1998, 93, 305-313.		2
149	Assessing Differential Expression Measurements by Highly Parallel Pyrosequencing and DNA Microarrays: A Comparative Study. OMICS A Journal of Integrative Biology, 2013, 17, 53-59.	1.0	2
150	Robustness of Equations that Define Molecular Subtypes of Glioblastoma Tumors Based on Five Transcripts Measured by RT-PCR. OMICS A Journal of Integrative Biology, 2015, 19, 41-51.	1.0	2
151	The N-Acetylglucosamine Kinase from Yarrowia lipolytica Is a Moonlighting Protein. International Journal of Molecular Sciences, 2021, 22, 13109.	1.8	1
152	When Phosphatases Go Mad: The Molecular Basis for Toxicity of Yeast Ppz1. International Journal of Molecular Sciences, 2022, 23, 4304.	1.8	1
153	Functional mapping of the Nâ€terminal region of the yeast moonlighting protein Sis2/Hal3 reveals crucial residues for Ppz1 regulation. FEBS Journal, 0, , .	2.2	1
154	Use of Yeast Genetic Tools to Define Biological Roles of Novel Protein Phosphatases. , 2007, 365, 299-308.		0