## Derick G Wansink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5637438/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy. Proceedings of the United States of America, 2009, 106, 13915-13920.                                                         | 7.1 | 245       |
| 2  | CRISPR/Cas9-Induced (CTGâ‹CAG) n Repeat Instability in the Myotonic Dystrophy Type 1 Locus: Implications for Therapeutic Genome Editing. Molecular Therapy, 2017, 25, 24-43.                                         | 8.2 | 108       |
| 3  | Constitutive and regulated modes of splicing produce six major myotonic dystrophy protein kinase<br>(DMPK) isoforms with distinct properties. Human Molecular Genetics, 2000, 9, 605-616.                            | 2.9 | 60        |
| 4  | Transgenic overexpression of human DMPK accumulates into hypertrophic cardiomyopathy, myotonic<br>myopathy and hypotension traits of myotonic dystrophy. Human Molecular Genetics, 2004, 13,<br>2505-2518.           | 2.9 | 55        |
| 5  | Alternative Splicing Controls Myotonic Dystrophy Protein Kinase Structure, Enzymatic Activity, and<br>Subcellular Localization. Molecular and Cellular Biology, 2003, 23, 5489-5501.                                 | 2.3 | 54        |
| 6  | Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy.<br>Frontiers in Neurology, 2018, 9, 368.                                                                                | 2.4 | 51        |
| 7  | Design and Analysis of Effects of Triplet Repeat Oligonucleotides in Cell Models for Myotonic<br>Dystrophy. Molecular Therapy - Nucleic Acids, 2013, 2, e81.                                                         | 5.1 | 42        |
| 8  | A low absolute number of expanded transcripts is involved in myotonic dystrophy type 1 manifestation in muscle. Human Molecular Genetics, 2016, 25, 1648-1662.                                                       | 2.9 | 31        |
| 9  | Antisense transcription of the myotonic dystrophy locus yields low-abundant RNAs with and without<br>(CAG)n repeat. RNA Biology, 2017, 14, 1374-1388.                                                                | 3.1 | 25        |
| 10 | CRISPR/Cas Applications in Myotonic Dystrophy: Expanding Opportunities. International Journal of Molecular Sciences, 2019, 20, 3689.                                                                                 | 4.1 | 24        |
| 11 | A Tail-Anchored Myotonic Dystrophy Protein Kinase Isoform Induces Perinuclear Clustering of<br>Mitochondria, Autophagy, and Apoptosis. PLoS ONE, 2009, 4, e8024.                                                     | 2.5 | 22        |
| 12 | Cell Membrane Integrity in Myotonic Dystrophy Type 1: Implications for Therapy. PLoS ONE, 2015, 10, e0121556.                                                                                                        | 2.5 | 21        |
| 13 | DMPK protein isoforms are differentially expressed in myogenic and neural cell lineages. Muscle and Nerve, 2009, 40, 545-555.                                                                                        | 2.2 | 19        |
| 14 | Intracellular Distribution and Nuclear Activity of Antisense Oligonucleotides After Unassisted<br>Uptake in Myoblasts and Differentiated Myotubes <i>In Vitro</i> . Nucleic Acid Therapeutics, 2017, 27,<br>144-158. | 3.6 | 15        |
| 15 | Expanded CUG repeats in <i>DMPK</i> transcripts adopt diverse hairpin conformations without influencing the structure of the flanking sequences. Rna, 2019, 25, 481-495.                                             | 3.5 | 15        |
| 16 | Abnormal actomyosin assembly in proliferating and differentiating myoblasts upon expression of a<br>cytosolic DMPK isoform. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 867-877.            | 4.1 | 14        |
| 17 | The nuclear concentration required for antisense oligonucleotide activity in myotonic dystrophy cells. FASEB Journal, 2019, 33, 11314-11325.                                                                         | 0.5 | 14        |
| 18 | Recovery in the Myogenic Program of Congenital Myotonic Dystrophy Myoblasts after Excision of the Expanded (CTG)n Repeat. International Journal of Molecular Sciences, 2019, 20, 5685.                               | 4.1 | 14        |

DERICK G WANSINK

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | (CTG)n repeat-mediated dysregulation of MBNL1 and MBNL2 expression during myogenesis in DM1 occurs already at the myoblast stage. PLoS ONE, 2019, 14, e0217317.                                                                                 | 2.5 | 12        |
| 20 | Systemic cell therapy for muscular dystrophies. Stem Cell Reviews and Reports, 2021, 17, 878-899.                                                                                                                                               | 3.8 | 11        |
| 21 | Assisted delivery of antisense therapeutics in animal models of heritable neurodegenerative and neuromuscular disorders: a systematic review and meta-analysis. Scientific Reports, 2018, 8, 4181.                                              | 3.3 | 9         |
| 22 | Trinucleotide-repeat expanded and normal DMPK transcripts contain unusually long poly(A) tails<br>despite differential nuclear residence. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms,<br>2017, 1860, 740-749.                   | 1.9 | 7         |
| 23 | Certainty-based marking in a formative assessment improves student course appreciation but not summative examination scores. BMC Medical Education, 2019, 19, 178.                                                                              | 2.4 | 6         |
| 24 | Advanced Fluorescence Imaging to Distinguish Between Intracellular Fractions of Antisense<br>Oligonucleotides. Methods in Molecular Biology, 2020, 2063, 119-138.                                                                               | 0.9 | 3         |
| 25 | Imaging of CPP Delivery Mechanisms of Oligonucleotides. Methods in Molecular Biology, 2022, 2383,<br>197-210.                                                                                                                                   | 0.9 | 2         |
| 26 | A comprehensive atlas of fetal splicing patterns in the brain of adult myotonic dystrophy type 1 patients. NAR Genomics and Bioinformatics, 2022, 4, lqac016.                                                                                   | 3.2 | 2         |
| 27 | 248th ENMC International Workshop: Myotonic dystrophies: Molecular approaches for clinical purposes, framing a European molecular research network, Hoofddorp, the Netherlands, 11–13 October 2019. Neuromuscular Disorders, 2020, 30, 521-531. | 0.6 | 1         |
| 28 | In Vitro Synthesis and RNA Structure Probing of CUG Triplet Repeat RNA. Methods in Molecular<br>Biology, 2020, 2056, 187-202.                                                                                                                   | 0.9 | 0         |