List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5637340/publications.pdf Version: 2024-02-01

ΟΙ CA SHISHKINA

#	Article	IF	CITATIONS
1	Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New Journal of Physics, 2010, 12, 075022.	1.2	264
2	Aspect-ratio dependency of Rayleigh-Bénard convection in box-shaped containers. Physics of Fluids, 2013, 25, .	1.6	92
3	Analysis of sheet-like thermal plumes in turbulent Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2008, 599, 383-404.	1.4	84
4	Thermal Boundary Layer Equation for Turbulent Rayleigh–Bénard Convection. Physical Review Letters, 2015, 114, 114302.	2.9	72
5	Analysis of thermal dissipation rates in turbulent Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2006, 546, 51.	1.4	68
6	Boundary layers and wind in cylindrical Rayleigh–Bénard cells. Journal of Fluid Mechanics, 2012, 697, 336-366.	1.4	64
7	Heat flux enhancement by regular surface roughness in turbulent thermal convection. Journal of Fluid Mechanics, 2015, 763, 109-135.	1.4	63
8	Thermal convection in inclined cylindrical containers. Journal of Fluid Mechanics, 2016, 790, .	1.4	63
9	Mean temperature profiles in turbulent Rayleigh–Bénard convection of water. Journal of Fluid Mechanics, 2009, 633, 449-460.	1.4	62
10	Comparison of computational codes for direct numerical simulations of turbulent Rayleigh–Bénard convection. Computers and Fluids, 2018, 166, 1-8.	1.3	62
11	Modelling the influence of wall roughness on heat transfer in thermal convection. Journal of Fluid Mechanics, 2011, 686, 568-582.	1.4	60
12	Rotating non-Oberbeck–Boussinesq Rayleigh–Bénard convection in water. Physics of Fluids, 2014, 26, .	1.6	58
13	Heat and momentum transport scalings in horizontal convection. Geophysical Research Letters, 2016, 43, 1219-1225.	1.5	58
14	On non-Oberbeck–Boussinesq effects in three-dimensional Rayleigh–Bénard convection in glycerol. Journal of Fluid Mechanics, 2013, 724, 175-202.	1.4	57
15	Local heat fluxes in turbulent Rayleigh-Bénard convection. Physics of Fluids, 2007, 19, 085107.	1.6	55
16	scaling enabled by multiscale wall roughness in Rayleigh–Bénard turbulence. Journal of Fluid Mechanics, 2019, 869, .	1.4	52
17	Multiple States in Turbulent Large-Aspect-Ratio Thermal Convection: What Determines the Number of Convection Rolls?. Physical Review Letters, 2020, 125, 074501.	2.9	51
18	Toroidal and poloidal energy in rotating Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2015, 762, 232-255.	1.4	48

#	Article	IF	CITATIONS
19	Confined inclined thermal convection in low-Prandtl-number fluids. Journal of Fluid Mechanics, 2018, 850, 984-1008.	1.4	43
20	Effect of Prandtl number on heat transport enhancement in Rayleigh-Bénard convection under geometrical confinement. Physical Review Fluids, 2018, 3, .	1.0	43
21	Boundary Zonal Flow in Rotating Turbulent Rayleigh-Bénard Convection. Physical Review Letters, 2020, 124, 084505.	2.9	42
22	Momentum and heat transport scalings in laminar vertical convection. Physical Review E, 2016, 93, 051102.	0.8	40
23	Prandtl-Number Dependence of Heat Transport in Laminar Horizontal Convection. Physical Review Letters, 2016, 116, 024302.	2.9	35
24	Periodically Modulated Thermal Convection. Physical Review Letters, 2020, 125, 154502.	2.9	35
25	Rayleigh-Bénard convection: The container shape matters. Physical Review Fluids, 2021, 6, .	1.0	35
26	A fourth order finite volume scheme for turbulent flow simulations in cylindrical domains. Computers and Fluids, 2007, 36, 484-497.	1.3	34
27	Elliptical Instability and Multiple-Roll Flow Modes of the Large-Scale Circulation in Confined Turbulent Rayleigh-Bénard Convection. Physical Review Letters, 2020, 125, 054502.	2.9	34
28	Simulation of turbulent thermal convection in complicated domains. Journal of Computational and Applied Mathematics, 2009, 226, 336-344.	1.1	32
29	Falkner–Skan boundary layer approximation in Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2013, 730, 442-463.	1.4	30
30	The influence of the cell inclination on the heat transport and large-scale circulation in liquid metal convection. Journal of Fluid Mechanics, 2020, 884, .	1.4	29
31	Bulk temperature and heat transport in turbulent Rayleigh–Bénard convection of fluids with temperature-dependent properties. Journal of Fluid Mechanics, 2018, 851, 374-390.	1.4	27
32	A fourth order accurate finite volume scheme for numerical simulations of turbulent Rayleigh–Bénard convection in cylindrical containers. Comptes Rendus - Mecanique, 2005, 333, 17-28.	2.1	26
33	Scaling relations in large-Prandtl-number natural thermal convection. Physical Review Fluids, 2017, 2,	1.0	26
34	Aspect Ratio Dependence of Heat Transfer in a Cylindrical Rayleigh-Bénard Cell. Physical Review Letters, 2022, 128, 084501.	2.9	23
35	Influence of the angle between the wind and the isothermal surfaces on the boundary layer structures in turbulent thermal convection. Physical Review E, 2014, 89, 033014.	0.8	22
36	Scaling in Internally Heated Convection: A Unifying Theory. Geophysical Research Letters, 2021, 48, e2020GL091198.	1.5	21

#	Article	IF	CITATIONS
37	Boundary zonal flows in rapidly rotating turbulent thermal convection. Journal of Fluid Mechanics, 2021, 915, .	1.4	21
38	Mean temperature profiles in turbulent thermal convection. Physical Review Fluids, 2017, 2, .	1.0	21
39	Stability conditions for the Leapfrog-Euler scheme with central spatial discretization of any order. Applied Numerical Analysis and Computational Mathematics, 2004, 1, 315-326.	0.6	20
40	Low-dimensional model of turbulent mixed convection in a complex domain. Physics of Fluids, 2012, 24, .	1.6	19
41	Natural convection in cylindrical containers with isothermal ring-shaped obstacles. Journal of Fluid Mechanics, 2020, 882, .	1.4	19
42	Regime transitions in thermally driven high-Rayleigh number vertical convection. Journal of Fluid Mechanics, 2021, 917, .	1.4	19
43	Mean flow structure in horizontal convection. Journal of Fluid Mechanics, 2017, 812, 525-540.	1.4	18
44	Velocity and thermal boundary layer equations for turbulent Rayleigh-Bénard convection. Physical Review Research, 2019, 1, .	1.3	18
45	Connecting wall modes and boundary zonal flows in rotating Rayleigh-Bénard convection. Physical Review Fluids, 2022, 7, .	1.0	16
46	Boundary and interior layers in turbulent thermal convection in cylindrical containers. International Journal of Computing Science and Mathematics, 2007, 1, 360.	0.2	15
47	Properties of large-scale flow structures in an isothermal ventilated room. Building and Environment, 2013, 59, 563-574.	3.0	15
48	Tenacious wall states in thermal convection in rapidly rotating containers. Journal of Fluid Mechanics, 2020, 898, .	1.4	12
49	Classical and symmetrical horizontal convection: detaching plumes and oscillations. Journal of Fluid Mechanics, 2020, 892, .	1.4	12
50	Developement of a Numerical Procedure for Direct Simulations of Turbulent Convection in a Closed Rectangular Cell. , 2007, , 381-388.		12
51	Dynamics and length scales in vertical convection of liquid metals. Journal of Fluid Mechanics, 2022, 932, .	1.4	11
52	Fluctuating Thermal Boundary Layers and Heat Transfer in Turbulent Rayleigh–Bénard Convection. Journal of Statistical Physics, 2017, 167, 626-635.	0.5	10
53	A numerical study of turbulent mixed convection in an enclosure with heated rectangular elements. Journal of Turbulence, 2012, 13, N22.	0.5	9
54	Conductive heat flux in measurements of the Nusselt number in turbulent Rayleigh-Bénard convection. Physical Review Fluids, 2016, 1, .	1.0	9

OLGA SHISHKINA

#	Article	IF	CITATIONS
55	The Neumann stability of high-order symmetric schemes for convection-diffusion problems. Siberian Mathematical Journal, 2007, 48, 1141-1146.	0.2	8
56	Analysis of the large-scale circulation and the boundary layers in turbulent Rayleigh-Bénard convection. ERCOFTAC Series, 2011, , 383-388.	0.1	8
57	Generation of zonal flows in convective systems by travelling thermal waves. Journal of Fluid Mechanics, 2021, 913, .	1.4	8
58	Heat flux in turbulent Rayleigh-Bénard convection: Predictions derived from a boundary layer theory. Physical Review Fluids, 2021, 6, .	1.0	7
59	Universal properties of penetrative turbulent Rayleigh-Bénard convection. Physical Review Fluids, 2021, 6, .	1.0	7
60	The influence of non-Oberbeck-Boussinesq effects on rotating turbulent Rayleigh-Bénard convection. Journal of Physics: Conference Series, 2011, 318, 082005.	0.3	5
61	Thermal boundary-layer structure in laminar horizontal convection. Journal of Fluid Mechanics, 2021, 915, .	1.4	5
62	Crossover of the relative heat transport contributions of plume ejecting and impacting zones in turbulent Rayleigh-Bénard convection ^(a) . Europhysics Letters, 2021, 134, 34002.	0.7	5
63	Dataâ€driven identification of the spatiotemporal structure of turbulent flows by streaming dynamic mode decomposition. GAMM Mitteilungen, 2022, 45, .	2.7	4
64	The use of Direct Numerical Simulations for solving industrial flow problems. ERCOFTAC Series, 2011, , 397-404.	0.1	3
65	Flow states and heat transport in Rayleigh–Bénard convection with different sidewall boundary conditions. Journal of Fluid Mechanics, 2022, 936, .	1.4	3
66	Passive scalar transport in Couette flow. Journal of Fluid Mechanics, 2022, 943, .	1.4	2
67	Modeling the influence of regular wall roughnesses on the heat transport. Journal of Physics: Conference Series, 2011, 318, 022034.	0.3	1
68	Heat transport in a cell heated at the bottom and the side (a). Europhysics Letters, 2021, 134, 34001.	0.7	1
69	Analysis of Thermal Dissipation Rates Based on Direct Numerical and Large–Eddy Simulations of Turbulent Rayleigh–B'enard Convection. , 2007, , 201-204.		1
70	DNS of Mixed Convection in Enclosed 3D-Domains with Interior Boundaries. ERCOFTAC Series, 2010, , 401-407.	0.1	1
71	Influence of the Geometry on Rayleigh-Bénard Convection. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2014, , 313-321.	0.2	0
72	Highly resolved numerical simulations of turbulent ventilation in a generic room. , 2009, , .		0

72 Highly resolved numerical simulations of turbulent ventilation in a generic room. , 2009, , .

#	Article	IF	CITATIONS
73	Direct Numerical Simulations of Indoor Ventilation. Springer Proceedings in Physics, 2012, , 293-296.	0.1	0
74	Direct Numerical Simulation of Non-Oberbeck-Boussinesq Effects in Turbulent Rayleigh-Bénard Convection of Water. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2013, , 599-606.	0.2	0
75	Highly-Resolved Numerical Simulations of High Rayleigh and Reynolds Number Indoor Ventilation in a Generic Room. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2014, , 303-311.	0.2	0
76	Numerical Investigation of the Spatial Resolution Requirements for Turbulent Rayleigh-Bénard Convection. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2014, , 181-187.	0.2	0
77	DNS of Thermal Convection in Rectangular Domains with Different Depth. ERCOFTAC Series, 2015, , 337-343.	0.1	0
78	Heat Transport in Horizontal and Inclined Convection. Springer Proceedings in Physics, 2017, , 245-250.	0.1	0
79	Simulation of Turbulent Thermal Convection Using Finite Volumes. , 2006, , 709-716.		0