
David C Denkenberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5637336/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The influence of large-scale wind power on global climate. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16115-16120.	3.3	255
2	An experimental study on a hemispherical solar still. Desalination, 2012, 286, 342-348.	4.0	225
3	Baseload wind energy: modeling the competition between gas turbines and compressed air energy storage for supplemental generation. Energy Policy, 2007, 35, 1474-1492.	4.2	200
4	The augmentation of distillate yield by using concentrator coupled solar still with phase change material. Desalination, 2013, 314, 189-192.	4.0	172
5	Productivity enhancements of compound parabolic concentrator tubular solar stills. Renewable Energy, 2016, 88, 391-400.	4.3	150
6	Effect of water and air flow on concentric tubular solar water desalting system. Applied Energy, 2013, 103, 109-115.	5.1	140
7	A review of efficient high productivity solar stills. Renewable and Sustainable Energy Reviews, 2019, 101, 197-220.	8.2	113
8	Performance enhancement of solar still through efficient heat exchange mechanism – A review. Applied Thermal Engineering, 2017, 114, 815-836.	3.0	96
9	Effect of air flow on "V―type solar still with cotton gauze cooling. Desalination, 2014, 337, 1-5.	4.0	86
10	Effect of heat removal on tubular solar desalting system. Desalination, 2016, 379, 24-33.	4.0	82
11	Productivity enhancement of solar still by using porous absorber with bubble-wrap insulation. Journal of Cleaner Production, 2018, 195, 1149-1161.	4.6	79
12	Experimental study on a parabolic concentrator assisted solar desalting system. Energy Conversion and Management, 2015, 105, 665-674.	4.4	75
13	Effect of nano-coated CuO absorbers with PVA sponges in solar water desalting system. Applied Thermal Engineering, 2019, 148, 1416-1424.	3.0	66
14	Optimization of specific rating for wind turbine arrays coupled to compressed air energy storage. Applied Energy, 2012, 96, 222-234.	5.1	61
15	Feeding everyone: Solving the food crisis in event of global catastrophes that kill crops or obscure the sun. Futures, 2015, 72, 57-68.	1.4	47
16	Resilience to global food supply catastrophes. Environment Systems and Decisions, 2015, 35, 301-313.	1.9	44
17	Isolated refuges for surviving global catastrophes. Futures, 2015, 72, 45-56.	1.4	40
18	A review on carbonized natural green flora for solar desalination. Renewable and Sustainable Energy Reviews, 2022, 158, 112121.	8.2	40

#	Article	IF	CITATIONS
19	Classification of global catastrophic risks connected with artificial intelligence. Al and Society, 2020, 35, 147-163.	3.1	37
20	Potential of microbial protein from hydrogen for preventing mass starvation in catastrophic scenarios. Sustainable Production and Consumption, 2021, 25, 234-247.	5.7	37
21	Global catastrophic and existential risks communication scale. Futures, 2018, 102, 27-38.	1.4	28
22	Scaling of greenhouse crop production in low sunlight scenarios. Science of the Total Environment, 2020, 707, 136012.	3.9	26
23	Cost-Effectiveness of Interventions for Alternate Food to Address Agricultural Catastrophes Globally. International Journal of Disaster Risk Science, 2016, 7, 205-215.	1.3	25
24	Feeding everyone if the sun is obscured and industry is disabled. International Journal of Disaster Risk Reduction, 2017, 21, 284-290.	1.8	24
25	Food without sun: price and life-saving potential. Foresight, 2019, 21, 118-129.	1.2	22
26	Food in space from hydrogen-oxidizing bacteria. Acta Astronautica, 2021, 180, 260-265.	1.7	21
27	Preliminary Automated Determination of Edibility of Alternative Foods: Non-Targeted Screening for Toxins in Red Maple Leaf Concentrate. Plants, 2019, 8, 110.	1.6	18
28	Cost-effectiveness of interventions for alternate food in the United States to address agricultural catastrophes. International Journal of Disaster Risk Reduction, 2018, 27, 278-289.	1.8	17
29	Chemical synthesis of food from CO2 for space missions and food resilience. Journal of CO2 Utilization, 2021, 53, 101726.	3.3	15
30	Solar distillation meets the real world: a review of solar stills purifying real wastewater and seawater. Environmental Science and Pollution Research, 2022, 29, 22860-22884.	2.7	15
31	Rapid repurposing of pulp and paper mills, biorefineries, and breweries for lignocellulosic sugar production in global food catastrophes. Food and Bioproducts Processing, 2022, 131, 22-39.	1.8	13
32	Augmentation of distillate yield in "V―type inclined wick solar still with cotton gauze cooling under regenerative effect. Cogent Engineering, 2016, 3, 1202476.	1.1	11
33	Interventions that may prevent or mollify supervolcanic eruptions. Futures, 2018, 102, 51-62.	1.4	11
34	Micronutrient Availability in Alternative Foods During Agricultural Catastrophes. Agriculture (Switzerland), 2018, 8, 169.	1.4	11
35	A National Pragmatic Safety Limit for Nuclear Weapon Quantities. Safety, 2018, 4, 25.	0.9	11
36	U.S. Potential of Sustainable Backyard Distributed Animal and Plant Protein Production during and after Pandemics. Sustainability, 2021, 13, 5067.	1.6	9

DAVID C DENKENBERGER

#	Article	IF	CITATIONS
37	Performance analysis of "V―type solar still with tilt wick and effect of wick coverage. Cogent Engineering, 2017, 4, 1419791.	1.1	8
38	Effect of CuO, MoO3 and ZnO nanomaterial coated absorbers for clean water production. SN Applied Sciences, 2020, 2, 1.	1.5	8
39	Solar radiation on southâ€facing inclined surfaces under different climatic zones in India. Environmental Progress and Sustainable Energy, 2019, 38, e13050.	1.3	7
40	Review of potential high-leverage and inexpensive mitigations for reducing risk in epidemics and pandemics. Journal of Global Health Reports, 0, 4, .	1.0	7
41	Synthetic fat from petroleum as a resilient food for global catastrophes: Preliminary techno-economic assessment and technology roadmap. Chemical Engineering Research and Design, 2022, 177, 255-272.	2.7	7
42	Surviving global risks through the preservation of humanity's data on the Moon. Acta Astronautica, 2018, 146, 161-170.	1.7	6
43	Design Optimization of Polymer Heat Exchanger for Automated Household-Scale Solar Water Pasteurizer. Designs, 2018, 2, 11.	1.3	6
44	Global Solutions vs. Local Solutions for the Al Safety Problem. Big Data and Cognitive Computing, 2019, 3, 16.	2.9	5
45	Accumulating evidence using crowdsourcing and machine learning: A living bibliography about existential risk and global catastrophic risk. Futures, 2020, 116, 102508.	1.4	5
46	Long-term cost-effectiveness of interventions for loss of electricity/industry compared to artificial general intelligence safety. European Journal of Futures Research, 2021, 9, .	1.5	4
47	Potential of microbial electrosynthesis for contributing to food production using CO2 during global agriculture-inhibiting disasters. Cleaner Engineering and Technology, 2021, 4, 100139.	2.1	4
48	Nutrition in Abrupt Sunlight Reduction Scenarios: Envisioning Feasible Balanced Diets on Resilient Foods. Nutrients, 2022, 14, 492.	1.7	4
49	Finite Difference Heat Exchanger Model: Flow Maldistribution with Thermal Coupling. Heat Transfer Engineering, 2021, 42, 889-903.	1.2	3
50	Global distribution of forest classes and leaf biomass for use as alternative foods to minimize malnutrition. , 2021, 7, 128.	0.5	3
51	Expanded Microchannel Heat Exchanger: Nondestructive Evaluation. Heat Transfer Engineering, 2019, 40, 1671-1679.	1.2	2
52	Long term cost-effectiveness of resilient foods for global catastrophes compared to artificial general intelligence safety. International Journal of Disaster Risk Reduction, 2022, 73, 102798.	1.8	2
53	Expanded Microchannel Heat Exchanger: Finite Difference Modeling. Designs, 2021, 5, 58.	1.3	1
54	Feeding Everyone: Solving the Food Crisis in Event of Global Catastrophes that Kill Crops or Obscure the Sun. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
55	Comparative Analysis of Water Quality of Different Types of Feed Water in Solar Energy Based Desalting System. , 2019, , 439-456.		0