Francisco J Tapiador

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5637281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global precipitation measurement: Methods, datasets and applications. Atmospheric Research, 2012, 104-105, 70-97.	1.8	363
2	Precipitation from Space: Advancing Earth System Science. Bulletin of the American Meteorological Society, 2013, 94, 365-375.	1.7	162
3	Review of GPM IMERG performance: A global perspective. Remote Sensing of Environment, 2022, 268, 112754.	4.6	112
4	An experiment to measure the spatial variability of rain drop size distribution using sixteen laser disdrometers. Geophysical Research Letters, 2010, 37, .	1.5	84
5	Regional climate models: 30Âyears of dynamical downscaling. Atmospheric Research, 2020, 235, 104785.	1.8	69
6	A Neural Networks–Based Fusion Technique to Estimate Half-Hourly Rainfall Estimates at 0.1° Resolution from Satellite Passive Microwave and Infrared Data. Journal of Applied Meteorology and Climatology, 2004, 43, 576-594.	1.7	66
7	Is Precipitation a Good Metric for Model Performance?. Bulletin of the American Meteorological Society, 2019, 100, 223-233.	1.7	64
8	Assessment of IMERG Precipitation Estimates over Europe. Remote Sensing, 2019, 11, 2470.	1.8	58
9	The geographical efficiency of Spain's regional airports: A quantitative analysis. Journal of Air Transport Management, 2008, 14, 205-212.	2.4	45
10	The Contribution of Rain Gauges in the Calibration of the IMERG Product: Results from the First Validation over Spain. Journal of Hydrometeorology, 2020, 21, 161-182.	0.7	43
11	Land use mapping methodology using remote sensing for the regional planning directives in Segovia, Spain. Landscape and Urban Planning, 2003, 62, 103-115.	3.4	41
12	Neural networks in satellite rainfall estimation. Meteorological Applications, 2004, 11, 83-91.	0.9	40
13	Characterizing European high speed train stations using intermodal time and entropy metrics. Transportation Research, Part A: Policy and Practice, 2009, 43, 197-208.	2.0	36
14	Assessment of renewable energy potential through satellite data and numerical models. Energy and Environmental Science, 2009, 2, 1142.	15.6	36
15	Orographic biases in IMERG precipitation estimates in the Ebro River basin (Spain): The effects of rain gauge density and altitude. Atmospheric Research, 2020, 244, 105068.	1.8	33
16	Regional changes in precipitation in Europe under an increased greenhouse emissions scenario. Geophysical Research Letters, 2007, 34, .	1.5	30
17	Climate classifications from regional and global climate models: Performances for present climate estimates and expected changes in the future at high spatial resolution. Atmospheric Research, 2019, 228, 107-121.	1.8	30
18	Fluid dynamics of evolving foams. Physical Chemistry Chemical Physics, 2009, 11, 10860.	1.3	27

FRANCISCO J TAPIADOR

#	Article	IF	CITATIONS
19	A Comparison of Perturbed Initial Conditions and Multiphysics Ensembles in a Severe Weather Episode in Spain. Journal of Applied Meteorology and Climatology, 2012, 51, 489-504.	0.6	27
20	Empirical values and assumptions in the microphysics of numerical models. Atmospheric Research, 2019, 215, 214-238.	1.8	27
21	Evaluation of gridded rainâ€gaugeâ€based precipitation datasets: Impact of station density, spatial resolution, altitude gradient and climate. International Journal of Climatology, 2021, 41, 3027-3043.	1.5	27
22	Deriving fine-scale socioeconomic information of urban areas using very high-resolution satellite imagery. International Journal of Remote Sensing, 2011, 32, 6437-6456.	1.3	26
23	On the Optimal Measuring Area for Pointwise Rainfall Estimation: A Dedicated Experiment with 14 Laser Disdrometers. Journal of Hydrometeorology, 2017, 18, 753-760.	0.7	24
24	A Probabilistic View on Raindrop Size Distribution Modeling: A Physical Interpretation of Rain Microphysics. Journal of Hydrometeorology, 2014, 15, 427-443.	0.7	22
25	Modelling long-term pan-European population change from 1870 to 2000 by using geographical information systems. Journal of the Royal Statistical Society Series A: Statistics in Society, 2010, 173, 31-50.	0.6	20
26	Reactive Nanocomposite Foams. Frontiers in Forests and Global Change, 2011, 30, 45-62.	0.6	19
27	Precipitation estimates for hydroelectricity. Energy and Environmental Science, 2011, 4, 4435.	15.6	18
28	Changes in the European Precipitation Climatologies as Derived by an Ensemble of Regional Models. Journal of Climate, 2008, 21, 2540-2557.	1.2	17
29	A Joint Estimate of the Precipitation Climate Signal in Europe Using Eight Regional Models and Five Observational Datasets. Journal of Climate, 2010, 23, 1719-1738.	1.2	16
30	100 Years of Progress in Hydrology. Meteorological Monographs, 2018, 59, 25.1-25.51.	5.0	16
31	A maximum entropy approach to satellite quantitative precipitation estimation (QPE). International Journal of Remote Sensing, 2004, 25, 4629-4639.	1.3	14
32	Vote evolution in Spain, 1977–2007: A spatial analysis at the municipal scale. Political Geography, 2009, 28, 319-328.	1.3	14
33	Evaluation of Simulated Winter Precipitation Using WRF-ARW during the ICE-POP 2018 Field Campaign. Weather and Forecasting, 2020, 35, 2199-2213.	0.5	14
34	An algorithm for the fusion of images based on Jaynes' maximum entropy method. International Journal of Remote Sensing, 2002, 23, 777-785.	1.3	13
35	A Multisource Analysis of Hurricane Vince. Bulletin of the American Meteorological Society, 2007, 88, 1027-1032.	1.7	13
36	Improving the representation of anthropogenic CO ₂ emissions in climate models: impact of a new parameterization for the Community Earth System ModelA(CESM). Earth System Dynamics, 2018, 9, 1045-1062.	2.7	13

FRANCISCO J TAPIADOR

#	Article	IF	CITATIONS
37	Best of Times, Worst of Times: A Tale of Two (Spanish) Geographies. Journal of Geography in Higher Education, 2007, 31, 81-96.	1.4	12
38	The Convective Rainfall Rate from Cloud Physical Properties Algorithm for Meteosat Second-Generation Satellites: Microphysical Basis and Intercomparisons using an Object-Based Method. Remote Sensing, 2019, 11, 527.	1.8	12
39	A physically based satellite rainfall estimation method using fluid dynamics modelling. International Journal of Remote Sensing, 2008, 29, 5851-5862.	1.3	11
40	Disruptions in precipitation cycles: Attribution to anthropogenic forcing. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2161-2177.	1.2	11
41	Exploiting an ensemble of regional climate models to provide robust estimates of projected changes in monthly temperature and precipitation probability distribution functions. Tellus, Series A: Dynamic Meteorology and Oceanography, 2009, 61, 57-71.	0.8	10
42	Consensus in climate classifications for present climate and global warming scenarios. Atmospheric Research, 2019, 216, 26-36.	1.8	10
43	The September 2019 floods in Spain: An example of the utility of satellite data for the analysis of extreme hydrometeorological events. Atmospheric Research, 2021, 257, 105588.	1.8	10
44	On the suitability of regional climate models for reconstructing climatologies. Atmospheric Research, 2011, 101, 739-751.	1.8	9
45	Discrepancies with satellite observations in the spatial structure of global precipitation as derived from global climate models. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 419-435.	1.0	9
46	Impact of wind pattern and complex topography on snow microphysics during International Collaborative Experiment for PyeongChang 2018 Olympic and Paralympic winter games (ICE-POP 2018). Atmospheric Chemistry and Physics, 2021, 21, 11955-11978.	1.9	9
47	Empirical values and assumptions in the convection schemes of numerical models. Geoscientific Model Development, 2022, 15, 3447-3518.	1.3	9
48	An Eye on the Storm: Integrating a Wealth of Data for Quickly Advancing the Physical Understanding and Forecasting of Tropical Cyclones. Bulletin of the American Meteorological Society, 2020, 101, E1718-E1742.	1.7	8
49	Seeking the best Weather Research and Forecasting model performance: an empirical score approach. Journal of Supercomputing, 2020, 76, 9629-9653.	2.4	7
50	A Maximum Entropy Modelling of the Rain Drop Size Distribution. Entropy, 2011, 13, 293-315.	1.1	6
51	Towards better characterization of global warming impacts in the environment through climate classifications with improved global models. International Journal of Climatology, 2022, 42, 5197-5217.	1.5	6
52	Entropy-based member selection in a GCM ensemble forecasting. Geophysical Research Letters, 2006, 33,	1.5	5
53	Atmospheric pollutants in a changing environment: key issues in reactivity and monitoring, global warming, and health. Environmental Science and Pollution Research, 2015, 22, 4789-4792.	2.7	5
54	RUSEM: A numerical model for policymaking and climate applications. Ecological Economics, 2019, 165, 106403.	2.9	5

FRANCISCO J TAPIADOR

#	Article	IF	CITATIONS
55	Coupling population dynamics with earth system models: the POPEM model. Environmental Science and Pollution Research, 2019, 26, 3184-3195.	2.7	5
56	A Satellite View of an Intense Snowfall in Madrid (Spain): The Storm â€~Filomena' in January 2021. Remote Sensing, 2021, 13, 2702.	1.8	5
57	Predicting Tropical Cyclone Rapid Intensification From Satellite Microwave Data and Neural Networks. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-13.	2.7	5
58	A maximum entropy analysis of global monthly series of rainfall from merged satellite data. International Journal of Remote Sensing, 2007, 28, 1113-1121.	1.3	4
59	Dynamics of a skydiver's epic free fall. Physics Today, 2014, 67, 64-65.	0.3	4
60	Hurricane Footprints in Global Climate Models. Entropy, 2008, 10, 613-620.	1.1	3
61	Spain's Budget Neglects Research. Science, 2010, 327, 1078-1079.	6.0	3
62	Decorrelation of Satellite Precipitation Estimates in Space and Time. Remote Sensing, 2018, 10, 752.	1.8	3
63	Objective Characterization of Rain Microphysics: Validating a Scheme Suitable for Weather and Climate Models. Journal of Hydrometeorology, 2018, 19, 929-946.	0.7	3
64	Estimates of the Precipitation Top Heights in Convective Systems Using Microwave Radiances. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 3166-3178.	2.7	3
65	Future Directions in Precipitation Science. Remote Sensing, 2021, 13, 1074.	1.8	3
66	Variability of Microwave Scattering in a Stochastic Ensemble of Measured Rain Drops. Remote Sensing, 2018, 10, 960.	1.8	2
67	Urban Vegetation Leveraging Actions. Sustainability, 2021, 13, 4843.	1.6	2
68	Precipitation Science: Observations, Retrievals, and Modeling. Advances in Meteorology, 2015, 2015, 1-1.	0.6	1
69	Automated convective and stratiform precipitation estimation in a small mountainous catchment using X-band radar data in Central Spain. Journal of Hydroinformatics, 2017, 19, 315-330.	1.1	1
70	Estimates of the Change in the Oceanic Precipitation Off the Coast of Europe due to Increasing Greenhouse Gas Emissions. Remote Sensing, 2018, 10, 1198.	1.8	1
71	Measuring Precipitation From Space. , 2018, , 211-221.		1
72	Neural Network tools for Satellite Rainfall Estimation. , 2007, , 149-161.		1

Neural Network tools for Satellite Rainfall Estimation. , 2007, , 149-161. 72

5

#	Article	IF	CITATIONS
73	High-Resolution, Near Real-Time Simulation of Microwave Radiance Using a Simple Land-Cover Based Emissivity Prior. Advances in Meteorology, 2014, 2014, 1-15.	0.6	0
74	Analysis of a New MPI Process Distribution for the Weather Research and Forecasting (WRF) Model. Scientific Programming, 2020, 2020, 1-13.	0.5	0
75	Natural Risks and Hazards. World Regional Geography Book Series, 2020, , 249-253.	0.1	0
76	Infrastructures: An Efficient Network. World Regional Geography Book Series, 2020, , 335-342.	0.1	0
77	Domestic Politics: New Scenarios. World Regional Geography Book Series, 2020, , 429-433.	0.1	0
78	Climates: A North-South Gradient. World Regional Geography Book Series, 2020, , 79-94.	0.1	0
79	Validation of Climate Models. Advances in Clobal Change Research, 2020, , 1073-1086.	1.6	0