Jae-Young Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5637207/publications.pdf

Version: 2024-02-01

19	967	759233	752698
papers	citations	h-index	20 g-index
20	20	20	1329
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The role of collagen in the dermal armor of the boxfish. Journal of Materials Research and Technology, 2020, 9, 13825-13841.	5.8	7
2	Radular stylus of Cryptochiton stelleri: A multifunctional lightweight and flexible fiber-reinforced composite. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 111, 103991.	3.1	14
3	Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs. Advanced Materials, 2019, 31, e1901561.	21.0	342
4	A Natural Stress Deflector on the Head? Mechanical and Functional Evaluation of the Woodpecker Skull Bones. Advanced Theory and Simulations, 2019, 2, 1800152.	2.8	17
5	A comparative analysis of the avian skull: Woodpeckers and chickens. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 84, 273-280.	3.1	12
6	Structure and mechanical implications of the pectoral fin skeleton in the Longnose Skate (Chondrichthyes, Batoidea). Acta Biomaterialia, 2017, 51, 393-407.	8.3	11
7	Hierarchical structure and compressive deformation mechanisms of bighorn sheep (Ovis canadensis) horn. Acta Biomaterialia, 2017, 64, 1-14.	8.3	60
8	A Sinusoidally Architected Helicoidal Biocomposite. Advanced Materials, 2016, 28, 6835-6844.	21.0	158
9	Structural analysis of the tongue and hyoid apparatus in a woodpecker. Acta Biomaterialia, 2016, 37, 1-13.	8.3	41
10	A Protocol for Bioinspired Design: A Ground Sampler Based on Sea Urchin Jaws. Journal of Visualized Experiments, 2016, , .	0.3	8
11	Multi-wall carbon nanotube-embedded lithium cobalt phosphate composites with reduced resistance for high-voltage lithium-ion batteries. Electronic Materials Letters, 2016, 12, 147-155.	2.2	12
12	A Sustainable Substitute for Ivory: the Jarina Seed from the Amazon. Scientific Reports, 2015, 5, 14387.	3.3	12
13	Biocompatibility and strength retention of biodegradable Mgâ€Caâ€Zn alloy bone implants. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 201-212.	3.4	54
14	Biodegradability engineering of biodegradable Mg alloys: Tailoring the electrochemical properties and microstructure of constituent phases. Scientific Reports, 2013, 3, 2367.	3.3	160
15	Rapid In Vitro Corrosion Induced by Crack-Like Pathway in Biodegradable Mg–10% Ca Alloy. Microscopy and Microanalysis, 2013, 19, 210-214.	0.4	1
16	<i>In vivo</i> corrosion mechanism by elemental interdiffusion of biodegradable Mg–Ca alloy. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 2251-2260.	3.4	21
17	Loadâ€bearing capacity and biological allowable limit of biodegradable metal based on degradation rate <i>in vivo</i> . Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 1535-1544.	3.4	20
18	Bone nodule formation of Mg63 cells is increased by the interplay of signaling pathways cultured on vitamin D3â€entrapped calcium phosphate films. Animal Cells and Systems, 2009, 13, 363-370.	2.2	3

#	Article	lF	CITATIONS
19	A new method for the preparation of bioactive calcium phosphate films hybridized with 1î±,25-dihydroxyvitamin D3. Journal of Materials Science: Materials in Medicine, 2009, 20, 2441-2453.	3.6	8