Liumin Suo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5636957/publications.pdf

Version: 2024-02-01

74 13,545 49 75
papers citations h-index g-index

76 76 76 10762 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	"Water-in-salt―electrolyte enables high-voltage aqueous lithium-ion chemistries. Science, 2015, 350, 938-943.	12.6	2,553
2	A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. Nature Communications, 2013, 4, 1481.	12.8	1,917
3	Advanced Highâ€Voltage Aqueous Lithium″on Battery Enabled by "Waterâ€inâ€Bisalt―Electrolyte. Angewandte Chemie - International Edition, 2016, 55, 7136-7141.	13.8	571
4	Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1156-1161.	7.1	512
5	"Waterâ€inâ€Saltâ€Electrolyte Makes Aqueous Sodiumâ€Ion Battery Safe, Green, and Longâ€Lasting. Advanc Energy Materials, 2017, 7, 1701189.	ced 19.5	487
6	Advanced Highâ€Voltage Aqueous Lithiumâ€lon Battery Enabled by "Waterâ€inâ€Bisalt―Electrolyte. Angewandte Chemie, 2016, 128, 7252-7257.	2.0	459
7	Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nature Energy, 2019, 4, 374-382.	39.5	449
8	How Solid-Electrolyte Interphase Forms in Aqueous Electrolytes. Journal of the American Chemical Society, 2017, 139, 18670-18680.	13.7	365
9	High-Performance All-Solid-State Lithium–Sulfur Battery Enabled by a Mixed-Conductive Li ₂ S Nanocomposite. Nano Letters, 2016, 16, 4521-4527.	9.1	333
10	Progress in Aqueous Rechargeable Sodiumâ€ion Batteries. Advanced Energy Materials, 2018, 8, 1703008.	19.5	297
11	Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes. ACS Nano, 2017, 11, 10462-10471.	14.6	283
12	High power rechargeable magnesium/iodine battery chemistry. Nature Communications, 2017, 8, 14083.	12.8	251
13	Nitrogen-Doped Carbon for Sodium-Ion Battery Anode by Self-Etching and Graphitization of Bimetallic MOF-Based Composite. CheM, 2017, 3, 152-163.	11.7	228
14	Enhancing the Reversibility of Mg/S Battery Chemistry through Li ⁺ Mediation. Journal of the American Chemical Society, 2015, 137, 12388-12393.	13.7	225
15	Highâ€Voltage Aqueous Naâ€lon Battery Enabled by Inertâ€Cationâ€Assisted Waterâ€inâ€Salt Electrolyte. Advan Materials, 2020, 32, e1904427.	iced 21.0	221
16	A Rechargeable Al/S Battery with an Ionicâ€Liquid Electrolyte. Angewandte Chemie - International Edition, 2016, 55, 9898-9901.	13.8	215
17	Electrospun FeS ₂ @Carbon Fiber Electrode as a High Energy Density Cathode for Rechargeable Lithium Batteries. ACS Nano, 2016, 10, 1529-1538.	14.6	199
18	Superior Stable Selfâ€Healing SnP ₃ Anode for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1500174.	19.5	197

#	Article	IF	Citations
19	Stabilizing high voltage LiCoO ₂ cathode in aqueous electrolyte with interphase-forming additive. Energy and Environmental Science, 2016, 9, 3666-3673.	30.8	190
20	Flexible Aqueous Liâ€lon Battery with High Energy and Power Densities. Advanced Materials, 2017, 29, 1701972.	21.0	175
21	A Pyrazineâ€Based Polymer for Fastâ€Charge Batteries. Angewandte Chemie - International Edition, 2019, 58, 17820-17826.	13.8	173
22	"Water-in-Salt―electrolytes enable green and safe Li-ion batteries for large scale electric energy storage applications. Journal of Materials Chemistry A, 2016, 4, 6639-6644.	10.3	172
23	Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li4Ti5O12 in lithium ion batteries: a combined experimental and theoretical study. Physical Chemistry Chemical Physics, 2011, 13, 15127.	2.8	169
24	Hybrid Mg ²⁺ /Li ⁺ Battery with Long Cycle Life and High Rate Capability. Advanced Energy Materials, 2015, 5, 1401507.	19.5	155
25	Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6197-6202.	7.1	151
26	Phase Transformation and Lithiation Effect on Electronic Structure of Li $<$ sub $<$ i $<$ x $<$ li $<$ esub $>$ FePO $<$ sub $>$ 4 $<$ lsub $>$: An In-Depth Study by Soft X-ray and Simulations. Journal of the American Chemical Society, 2012, 134, 13708-13715.	13.7	136
27	Ether-based electrolyte enabled Na/FeS2 rechargeable batteries. Electrochemistry Communications, 2015, 54, 18-22.	4.7	121
28	Epitaxial Induced Plating Currentâ€Collector Lasting Lifespan of Anodeâ€Free Lithium Metal Battery. Advanced Energy Materials, 2021, 11, 2003709.	19.5	119
29	In situ formed carbon bonded and encapsulated selenium composites for Li–Se and Na–Se batteries. Journal of Materials Chemistry A, 2015, 3, 555-561.	10.3	115
30	Spinel LiNi _{0.5} Mn _{1.5} O ₄ Cathode for Highâ€Energy Aqueous Lithiumâ€Ion Batteries. Advanced Energy Materials, 2017, 7, 1600922.	19.5	103
31	"Water-in-Salt―electrolyte enabled LiMn2O4/TiS2 Lithium-ion batteries. Electrochemistry Communications, 2017, 82, 71-74.	4.7	99
32	Double-oxide sulfur host for advanced lithium-sulfur batteries. Nano Energy, 2017, 38, 12-18.	16.0	93
33	Water-in-Salt Electrolyte Promotes High-Capacity FeFe(CN) < sub > 6 < /sub > Cathode for Aqueous Al-Ion Battery. ACS Applied Materials & amp; Interfaces, 2019, 11, 41356-41362.	8.0	93
34	In Situ Formation of a Stable Interface in Solid-State Batteries. ACS Energy Letters, 2019, 4, 1650-1657.	17.4	93
35	The Compensation Effect Mechanism of Fe–Ni Mixed Prussian Blue Analogues in Aqueous Rechargeable Aluminumâ€ion Batteries. ChemSusChem, 2020, 13, 732-740.	6.8	93
36	Roll-to-roll fabrication of organic nanorod electrodes for sodium ion batteries. Nano Energy, 2015, 13, 537-545.	16.0	91

#	Article	IF	Citations
37	Pomegranate-Structured Conversion-Reaction Cathode with a Built-in Li Source for High-Energy Li-Ion Batteries. ACS Nano, 2016, 10, 5567-5577.	14.6	88
38	Carbon cage encapsulating nano-cluster Li2S by ionic liquid polymerization and pyrolysis for high performance Li–S batteries. Nano Energy, 2015, 13, 467-473.	16.0	76
39	lodine Vapor Transport-Triggered Preferential Growth of Chevrel Mo ₆ S ₈ Nanosheets for Advanced Multivalent Batteries. ACS Nano, 2020, 14, 1102-1110.	14.6	72
40	Ultralight Electrolyte for Highâ€Energy Lithium–Sulfur Pouch Cells. Angewandte Chemie - International Edition, 2021, 60, 17547-17555.	13.8	72
41	Liâ€Rich Li ₂ [Ni _{0.8} Co _{0.1} Mn _{0.1}]O ₂ for Anodeâ€Free Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 8289-8296.	13.8	71
42	Interface Concentratedâ€Confinement Suppressing Cathode Dissolution in Waterâ€inâ€Salt Electrolyte. Advanced Energy Materials, 2020, 10, 2000665.	19.5	70
43	A Rechargeable Al/S Battery with an Ionicâ€Liquid Electrolyte. Angewandte Chemie, 2016, 128, 10052-10055.	2.0	64
44	In situ lithiated FeF3/C nanocomposite as high energy conversion-reaction cathode for lithium-ion batteries. Journal of Power Sources, 2016, 307, 435-442.	7.8	64
45	Manipulating Sulfur Mobility Enables Advanced Li-S Batteries. Matter, 2019, 1, 1047-1060.	10.0	63
46	Amorphous anion-rich titanium polysulfides for aluminum-ion batteries. Science Advances, 2021, 7, .	10.3	63
47	FT-Raman spectroscopy study of solvent-in-salt electrolytes. Chinese Physics B, 2016, 25, 016101.	1.4	61
48	Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime. Nature Chemistry, 2021, 13, 1061-1069.	13.6	57
49	Reversible Al3+ storage mechanism in anatase TiO2 cathode material for ionic liquid electrolyte-based aluminum-ion batteries. Journal of Energy Chemistry, 2020, 51, 72-80.	12.9	56
50	Highly ordered staging structural interface between LiFePO4 and FePO4. Physical Chemistry Chemical Physics, 2012, 14, 5363.	2.8	53
51	Sizeâ€Dependent Staging and Phase Transition in LiFePO ₄ /FePO ₄ . Advanced Functional Materials, 2014, 24, 312-318.	14.9	48
52	A Better Choice to Achieve High Volumetric Energy Density: Anodeâ€Free Lithiumâ€Metal Batteries. Advanced Materials, 2022, 34, e2110323.	21.0	46
53	Novel approach for a high-energy-density Li–air battery: tri-dimensional growth of Li2O2 crystals tailored by electrolyte Li+ ion concentrations. Journal of Materials Chemistry A, 2014, 2, 9020.	10.3	41
54	Lowâ€Density Fluorinated Silane Solvent Enhancing Deep Cycle Lithium–Sulfur Batteries' Lifetime. Advanced Materials, 2021, 33, e2102034.	21.0	39

#	Article	IF	CITATIONS
55	Brownian-snowball-mechanism-induced hierarchical cobalt sulfide for supercapacitors. Journal of Power Sources, 2019, 412, 321-330.	7.8	31
56	Cation-synergy stabilizing anion redox of Chevrel phase Mo6S8 in aluminum ion battery. Energy Storage Materials, 2021, 37, 87-93.	18.0	31
57	TiO2 (B) anode for high-voltage aqueous Li-ion batteries. Energy Storage Materials, 2021, 42, 438-444.	18.0	28
58	Dense Allâ€Electrochemâ€Active Electrodes for Allâ€Solidâ€State Lithium Batteries. Advanced Materials, 2021, 33, e2008723.	21.0	26
59	Joint Cationic and Anionic Redox Chemistry for Advanced Mg Batteries. Nano Letters, 2020, 20, 6852-6858.	9.1	25
60	Water-in-salt widens the electrochemical stability window: Thermodynamic and kinetic factors. Current Opinion in Electrochemistry, 2021, 29, 100818.	4.8	25
61	Spinel-related Li2Ni0.5Mn1.5O4 cathode for 5-V anode-free lithium metal batteries. Energy Storage Materials, 2022, 45, 821-827.	18.0	21
62	A Pyrazineâ€Based Polymer for Fastâ€Charge Batteries. Angewandte Chemie, 2019, 131, 17984-17990.	2.0	19
63	Wearable Bipolar Rechargeable Aluminum Battery. , 2020, 2, 808-813.		19
64	Solid-Like Nano-Anion Cluster Constructs a Free Lithium-Ion-Conducting Superfluid Framework in a Water-in-Salt Electrolyte. Journal of Physical Chemistry C, 2021, 125, 11838-11847.	3.1	17
65	Amorphous Redox-Rich Polysulfides for Mg Cathodes. Jacs Au, 2021, 1, 1266-1274.	7.9	14
66	Cereusâ€Shaped Mesoporous Rutile TiO ₂ Formed in Ionic Liquid: Synthesis and Liâ€Storage Properties. ChemElectroChem, 2014, 1, 549-553.	3.4	13
67	Ultralight Electrolyte for Highâ€Energy Lithium–Sulfur Pouch Cells. Angewandte Chemie, 2021, 133, 17688-17696.	2.0	13
68	Simplifying and accelerating kinetics enabling fast-charge Al batteries. Journal of Materials Chemistry A, 2020, 8, 23834-23843.	10.3	12
69	Electronic Conductive Inorganic Cathodes Promising Highâ€Energy Organic Batteries. Advanced Materials, 2021, 33, e2005781.	21.0	12
70	Progress in Rechargeable Aqueous Alkali-Ion Batteries in China. Energy & Energy & 2021, 35, 9228-9239.	5.1	9
71	All-in-One Ionic–Electronic Dual-Carrier Conducting Framework Thickening All-Solid-State Electrode. ACS Energy Letters, 2022, 7, 766-772.	17.4	7
72	Electroactive-catalytic conductive framework for aluminum-sulfur batteries. Energy Storage Materials, 2022, 51, 266-272.	18.0	7

#	Article	IF	CITATIONS
73	Sandwich Structure Corrosion-Resistant Current Collector for Aqueous Batteries. ACS Applied Energy Materials, 2021, 4, 4928-4934.	5.1	4
74	Liâ€Rich Li 2 [Ni 0.8 Co 0.1 Mn 0.1]O 2 for Anodeâ€Free Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 8370-8377.	2.0	2