
Timothy D Murray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5636650/publications.pdf Version: 2024-02-01

Τιμότην Ο Μιιρραν

-C

#	Article	IF	CITATIONS
1	Registration of â€~Devote' soft white winter wheat. Journal of Plant Registrations, 2021, 15, 121-131.	0.5	2
2	Registration of â€~Stingray CL+' soft white winter wheat. Journal of Plant Registrations, 2021, 15, 161-171.	0.5	0
3	Registration of â€~Scorpio' hard red winter wheat. Journal of Plant Registrations, 2021, 15, 113-120.	0.5	0
4	Registration of â€~Castella' soft white winter club wheat. Journal of Plant Registrations, 2021, 15, 504-514.	0.5	2
5	Registration of â€~ARS Crescent' soft white winter club wheat. Journal of Plant Registrations, 2021, 15, 515-526.	0.5	2
6	Registration of â€~Resilience CL+' soft white winter wheat. Journal of Plant Registrations, 2021, 15, 196-205.	0.5	0
7	Resistance to Heterodera filipjevi and H. avenae in Winter Wheat is Conferred by Different QTL. Phytopathology, 2020, 110, 472-482.	2.2	12
8	Registration of â€~Mela CL+' soft white winter wheat. Journal of Plant Registrations, 2020, 14, 144-152.	0.5	2
9	How â€~Madsen' has shaped Pacific Northwest wheat and beyond. Journal of Plant Registrations, 2020, 14, 223-233.	0.5	3
10	Carbohydrate Accumulation and Differential Transcript Expression in Winter Wheat Lines with Different Levels of Snow Mold and Freezing Tolerance after Cold Treatment. Plants, 2020, 9, 1416.	3.5	3
11	Registration of â€~Curiosity CL+' soft white winter wheat. Journal of Plant Registrations, 2020, 14, 377-387.	0.5	2
12	Registration of â€~Purl' soft white winter wheat. Journal of Plant Registrations, 2020, 14, 398-405.	0.5	1
13	Survey of take-all (Gaeumannomyces tritici) on cereals in Tunisia and impact of crop sequences. Crop Protection, 2020, 135, 105189.	2.1	5
14	Mapping QTL conferring speckled snow mold resistance in winter wheat (<i>Triticum) Tj ETQq0 0 0 rgBT /O</i>	verlock 1(1.9	0 Tf 50 222 To 4
15	An endophyte of Macrochloa tenacissima (esparto or needle grass) from Tunisia is a novel species in the Fusarium redolens species complex. Mycologia, 2020, 112, 792-807.	1.9	7
16	Immunoreagents for development of a diagnostic assay specific for <i>Rathayibacter toxicus</i> . Food and Agricultural Immunology, 2020, 31, 231-242.	1.4	3
17	First Report of Bacterial Head Blight of <i>Pseudoroegneria spicata</i> subsp. <i>spicata</i> Caused by <i>Rathayibacter agropyri</i> in Idaho. Plant Disease, 2020, 104, 1534.	1.4	3

Genetic Dissection of Snow Mold Tolerance in US Pacific Northwest Winter Wheat Through Genome-Wide Association Study and Genomic Selection. Frontiers in Plant Science, 2019, 10, 1337. 18 3.6 19

#	Article	IF	CITATIONS
19	Evaluating Selection of a Quantitative Trait: Snow Mold Tolerance in Winter Wheat. , 2019, 2, 1-8.		5
20	Breeding new cultivars for sustainable wheat production. Crop Journal, 2019, 7, 715-717.	5.2	23
21	The Identification and Conservation of Tunicaminyluracil-Related Biosynthetic Gene Clusters in Several Rathayibacter Species Collected From Australia, Africa, Eurasia, and North America. Frontiers in Microbiology, 2019, 10, 2914.	3.5	3
22	<i>Afrina sporoboliae</i> sp. n. (Nematoda: Anguinidae) Associated with <i>Sporobolus cryptandrus</i> from Idaho, United States: Phylogenetic Relationships and Population Structure. Phytopathology, 2018, 108, 768-779.	2.2	1
23	Evolution of the U.S. Biological Select Agent Rathayibacter toxicus. MBio, 2018, 9, .	4.1	10
24	Development of Perennial Wheat Through Hybridization Between Wheat and Wheatgrasses: A Review. Engineering, 2018, 4, 507-513.	6.7	43
25	Genome-wide association mapping for eyespot disease in US Pacific Northwest winter wheat. PLoS ONE, 2018, 13, e0194698.	2.5	16
26	Rathayibacter agropyri (non O'Gara 1916) comb. nov., nom. rev., isolated from western wheatgrass (Pascopyrum smithii). International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 1519-1525.	1.7	20
27	Genomic Regions Associated with Tolerance to Freezing Stress and Snow Mold in Winter Wheat. G3: Genes, Genomes, Genetics, 2017, 7, 775-780.	1.8	39
28	Occurence of sclerotinia stem rot of fenugreek caused by Sclerotinia trifoliorum and S. sclerotiorum in Tunisia. European Journal of Plant Pathology, 2017, 149, 587-597.	1.7	2
29	<i>Rathayibacter toxicus</i> , Other <i>Rathayibacter</i> Species Inducing Bacterial Head Blight of Grasses, and the Potential for Livestock Poisonings. Phytopathology, 2017, 107, 804-815.	2.2	39
30	Targeted and efficient transfer of value-added genes into a wheat variety. Molecular Breeding, 2017, 37, 1.	2.1	5
31	Registration of â€~Loma' Hard Red Winter Wheat. Journal of Plant Registrations, 2017, 11, 281-284.	0.5	4
32	Registration of †Jasper' Soft White Winter Wheat. Journal of Plant Registrations, 2017, 11, 263-268.	0.5	16
33	Registration of â€~Pritchett' Soft White Winter Club Wheat. Journal of Plant Registrations, 2017, 11, 152-158.	0.5	6
34	Whole genome sequence of two Rathayibacter toxicus strains reveals a tunicamycin biosynthetic cluster similar to Streptomyces chartreusis. PLoS ONE, 2017, 12, e0183005.	2.5	13
35	Registration of â€~Northern' Hard Red Winter Wheat. Journal of Plant Registrations, 2016, 10, 135-138.	0.5	4
36	Characterization of Resistance to the Cereal Cyst Nematode in the Soft White Winter Wheat â€~Madsen'. Plant Disease, 2016, 100, 679-685.	1.4	12

#	Article	IF	CITATIONS
37	Occurrence and Survival of Apothecia of the Eyespot Pathogens Oculimacula acuformis and O. yallundae on Wheat Stubble in the U.S. Pacific Northwest. Plant Disease, 2016, 100, 991-995.	1.4	9
38	Quantitative Cephalosporium Stripe Disease Resistance Mapped in the Wheat Genome. Crop Science, 2016, 56, 1586-1601.	1.8	13
39	Mapping resistance genes for Oculimacula acuformis in Aegilops longissima. Theoretical and Applied Genetics, 2014, 127, 2085-2093.	3.6	5
40	Resistance toOculimacula yallundaeandOculimacula acuformisis conferred byPch2in wheat. Plant Pathology, 2014, 63, 400-404.	2.4	4
41	Biology and control of cephalosporium stripe of wheat. Plant Pathology, 2014, 63, 1207-1217.	2.4	11
42	Registration of â€~Puma' Soft White Winter Wheat. Journal of Plant Registrations, 2014, 8, 273-278.	0.5	21
43	Genetic Variation of <i>Wheat streak mosaic virus</i> in the United States Pacific Northwest. Phytopathology, 2013, 103, 98-104.	2.2	19
44	Identifying New Sources of Resistance to Eyespot of Wheat in <i>Aegilops longissima</i> . Plant Disease, 2013, 97, 346-353.	1.4	10
45	Registration of â€~Cara' Soft White Winter Club Wheat. Journal of Plant Registrations, 2013, 7, 81-88.	0.5	10
46	Registration of â€~Otto' Wheat. Journal of Plant Registrations, 2013, 7, 195-200.	0.5	26
47	Effective Resources in Wheat and Wheat– <i>Thinopyrum</i> Derivatives for Resistance to <i>Heterodera filipjevi</i> in China. Crop Science, 2012, 52, 1209-1217.	1.8	17
48	PCR-Based Detection of <i>Cephalosporium gramineum</i> in Winter Wheat. Plant Disease, 2012, 96, 437-442.	1.4	7
49	Mapping QTL for resistance to eyespot of wheat in Aegilops longissima. Theoretical and Applied Genetics, 2012, 125, 355-366.	3.6	30
50	Polymorphic nuclear gene sequences indicate a novel genome donor in the polyploid genus Thinopyrum. Hereditas, 2011, 148, 8-27.	1.4	16
51	Mapping a gene conferring resistance to Wheat yellow mosaic virus in European winter wheat cultivar â€ĩlbis' (Triticum aestivum L.). Euphytica, 2010, 176, 223-229.	1.2	27
52	Registration of â€~Xerpha' Wheat. Journal of Plant Registrations, 2010, 4, 137-140.	0.5	29
53	US Preparations for Potential Introduction of Ug99 Strains of Wheat Stem Rust. Outlooks on Pest Management, 2009, 20, 148-152.	0.2	4
54	Education in Plant Pathology: Present Status and Future Challenges. Plant Disease, 2009, 93, 1238-1251.	1.4	9

#	Article	IF	CITATIONS
55	Multilocus population structure of Tapesia yallundae in Washington State. Molecular Ecology, 2008, 11, 2229-2239.	3.9	33
56	Resistance to soil-borne diseases of wheat: Contributions from the wheatgrasses <i>Thinopyrum intermedium</i> and <i>Th. ponticum</i> . Canadian Journal of Plant Science, 2008, 88, 195-205.	0.9	20
57	Influence of Cold-Hardening and Soil Matric Potential on Resistance to Speckled Snow Mold in Wheat. Plant Disease, 2008, 92, 1021-1025.	1.4	6
58	Registration of â€~Bauermeister' Wheat. Crop Science, 2007, 47, 430-431.	1.8	7
59	Registration of †MDM' Wheat. Journal of Plant Registrations, 2007, 1, 104-106.	0.5	2
60	Registration of â€~Masami' Wheat. Crop Science, 2006, 46, 476-477.	1.8	8
61	Seed Transmission of Cephalosporium gramineum in Winter Wheat. Plant Disease, 2006, 90, 803-806.	1.4	12
62	Resistance to eyespot of wheat, caused by Tapesia yallundae, derived from Thinopyrum intermedium homoeologous group 4 chromosome. Theoretical and Applied Genetics, 2005, 111, 932-940.	3.6	31
63	A single chromosome addition from Thinopyrum elongatum confers a polycarpic, perennial habit to annual wheat. Journal of Experimental Botany, 2004, 55, 1715-1720.	4.8	52
64	A New Source of Resistance to Tapesia yallundae Associated with a Homoeologous Group 4 Chromosome in Thinopyrum ponticum. Phytopathology, 2004, 94, 932-937.	2.2	24
65	Population Genetic Structure of Tapesia acuformis in Washington State. Phytopathology, 2003, 93, 650-656.	2.2	8
66	First Report of Tan Spot of Wheat Caused by Pyrenophora tritici-repentis in the Pacific Northwest. Plant Disease, 2003, 87, 203-203.	1.4	0
67	Species and Mating-Type Distribution of Tapesia yallundae and T. acuformis and Occurrence of Apothecia in the U.S. Pacific Northwest. Phytopathology, 2002, 92, 703-709.	2.2	25
68	Perennial Wheat Germ Plasm Lines Resistant to Eyespot, Cephalosporium Stripe, and Wheat Streak Mosaic. Plant Disease, 2002, 86, 1043-1048.	1.4	41
69	A Multiplex PCR Test for Determination of Mating Type Applied to the Plant Pathogens Tapesia yallundae and Tapesia acuformis. Fungal Genetics and Biology, 2001, 33, 173-180.	2.1	53
70	Registration of †Bruehl' Wheat. Crop Science, 2001, 41, 2006-2007.	1.8	25
71	Infection of Winter Wheat by a β-Clucuronidase-Transformed Isolate of Cephalosporium gramineum. Phytopathology, 2001, 91, 232-239.	2.2	10
72	Molecular cytogenetic characterization of Thinopyrum genomes conferring perennial growth habit in wheat-Thinopyrum amphiploids. Plant Breeding, 2001, 120, 21-26.	1.9	25

#	Article	IF	CITATIONS
73	Perennial wheat: The development of a sustainable cropping system for the U.S. Pacific Northwest. Renewable Agriculture and Food Systems, 2001, 16, 147-151.	0.5	55
74	Evaluation of Dasypyrum villosum Populations for Resistance to Cereal Eyespot and Stripe Rust Pathogens. Plant Disease, 2000, 84, 40-44.	1.4	35
75	Pathogenicity, host-specificity, and population biology of tapesia spp., causal agents of eyespot disease of cereals. Advances in Botanical Research, 2000, 33, 225-258.	1.1	40
76	Molecular cytogenetic characterization of Thinopyrum and wheat-Thinopyrum translocated chromosomes in a wheat-Thinopyrum amphiploid. Chromosome Research, 1998, 6, 183-189.	2.2	48
77	Title is missing!. Genetic Resources and Crop Evolution, 1998, 45, 47-56.	1.6	12
78	Mapping a gene conferring resistance to Pseudocercosporella herpotrichoides on chromosome 4V of Dasypyrum villosum in a wheat background. Genome, 1998, 41, 1-6.	2.0	57
79	Influence of pH and Matric Potential on Germination of Cephalosporium gramineum Conidia. Plant Disease, 1998, 82, 975-978.	1.4	9
80	Mapping a gene conferring resistance to <i>Pseudocercosporella herpotrichoides</i> on chromosome 4V of <i>Dasypyrum villosum</i> in a wheat background. Genome, 1998, 41, 1-6.	2.0	33
81	Identification of Resistance to Pseudocercosporella herpotrichoides in Triticum monococcum. Plant Disease, 1997, 81, 1181-1186.	1.4	30
82	Identification of an RFLP interval containing Pch2 on chromosome 7AL in wheat. Genome, 1997, 40, 249-252.	2.0	36
83	Characterization of an Agropyron elongatum chromosome conferring resistance to cephalosporium stripe in common wheat. Genome, 1996, 39, 56-62.	2.0	35
84	Linkage relations among eyespot resistance gene Pch2, endopeptidase Ep-A1b, and RFLP marker Xpsr121 on chromosome 7A of wheat. Plant Breeding, 1996, 115, 273-275.	1.9	39
85	Resistance to Benzimidazole Fungicides in the Cereal Eyespot Pathogen, <i>Pseudocercosporella herpotrichoides,</i> in the Pacific Northwest 1984 to 1990. Plant Disease, 1996, 80, 19.	1.4	28
86	Infection of Field-Grown Winter Wheat byCephalosporium gramineumand the Effect of Soil pH. Phytopathology, 1996, 86, 177.	2.2	16
87	Use of Alien Genes for the Development of Disease Resistance in Wheat. Annual Review of Phytopathology, 1995, 33, 429-443.	7.8	64
88	A New Source of Resistance to <i>Pseudocercosporella herpotrichoides</i> , Cause of Eyespot Disease of Wheat, Located on Chromosome 4V of <i>Dasypyrum villosum</i> . Plant Breeding, 1994, 113, 281-286.	1.9	58
89	Identifying Wheat Genotypes Resistant to Eyespot Disease with abeta-Glucuronidase-Transformed Strain ofPseudocercosporella herpotrichoides. Phytopathology, 1994, 84, 972.	2.2	30
90	Control of Cephalosporium Stripe of Winter Wheat by Liming. Plant Disease, 1992, 76, 282.	1.4	18

#	Article	IF	CITATIONS
91	A psychrophilic Orbicula associated with oat kernels. The Mycologist, 1991, 5, 113-114.	0.4	4
92	Influence of pH and Matric Potential on Sporulation of <i>Cephalosporium gramineum</i> . Phytopathology, 1991, 81, 79.	2.2	6
93	First Report of Black Chaff of Wheat Caused by Xanthomonas campestris pv. translucens in Washington State. Plant Disease, 1990, 74, 183.	1.4	3
94	Effects of Root-Wounding and Inoculum Density on Cephalosporium Stripe in Winter Wheat. Phytopathology, 1990, 80, 1108.	2.2	16
95	Use of Epidermal Cell Responses to Evaluate Resistance of Winter Wheat Cultivars toPseudocercosporella herpotrichoides. Phytopathology, 1989, 79, 1043.	2.2	5
96	Sporulation and Survival of Conidia of <i>Cephalosporium gramineum</i> as Influenced by Soil pH, Soil Matric Potential, and Soil Fumigation. Phytopathology, 1989, 79, 787.	2.2	15
97	Influence of Soil Matric Potential and Soil pH on Cephalosporium Stripe of Winter Wheat in the Greenhouse. Plant Disease, 1988, 72, 1011.	1.4	11
98	Soil Application of Benzimidazole Fungicides for the Control of Cephalosporium Stripe in the Greenhouse and Field. Plant Disease, 1988, 72, 1054.	1.4	4
99	Resistance of Winter Wheats to Cephalosporium Stripe in the Field. Plant Disease, 1986, 70, 314.	1.4	15
100	Isolation ofCorynebacterium agropyrifrom 30- to 40-Year-Old Herbarium Specimens ofAgropyronSpecies. Plant Disease, 1986, 70, 378.	1.4	16
101	Effects of Host Resistance toPseudocercosporella herpotrichoidesand Foot Rot Severity on Yield and Yield Components in Winter Wheat. Plant Disease, 1986, 70, 851.	1.4	9
102	Papilla Formation and Hypersensitivity at Penetration Sites and Resistance toPseudocercosporella herpotrichoidesin Winter Wheat. Phytopathology, 1986, 76, 737.	2.2	13
103	Composition of Wheat Straw Infested withCephalosporium gramineumand Implications for Its Decomposition in Soil. Phytopathology, 1983, 73, 1046.	2.2	2
104	Role of the Hypodermis and Secondary Cell Wall Thickening in Basal Stem Internodes in Resistance to Strawbreaker Foot Rot in Winter Wheat. Phytopathology, 1983, 73, 261.	2.2	20
105	Occurrence of eyespot of cereals in Tunisia and identification of Oculimacula species and mating types. Canadian Journal of Plant Pathology, 0, , .	1.4	0
106	Identification of snow mold tolerance QTL in a landrace winter wheat using linkage mapping. Crop Science, 0, , .	1.8	4