List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5636636/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hippocampal α5-GABAA Receptors Modulate Dopamine Neuron Activity in the Rat Ventral Tegmental Area. Biological Psychiatry Global Open Science, 2023, 3, 78-86.	2.2	8
2	Analgesic Effects of Oxycodone in Combination With Risperidone or Ziprasidone: Results From a Pilot Randomized Controlled Trial in Healthy Volunteers. Frontiers in Pain Research, 2022, 3, 752256.	2.0	0
3	Buprenorphine Exposure Alters the Development and Migration of Interneurons in the Cortex. Frontiers in Molecular Neuroscience, 2022, 15, .	2.9	8
4	Positive Allosteric Modulation of α5-GABAA Receptors Reverses Stress-Induced Alterations in Dopamine System Function and Prepulse Inhibition of Startle. International Journal of Neuropsychopharmacology, 2022, 25, 688-698.	2.1	5
5	Gestational Buprenorphine Exposure Disrupts Dopamine Neuron Activity and Related Behaviors in Adulthood. ENeuro, 2022, 9, ENEURO.0499-21.2022.	1.9	5
6	Orexin Modulation of VTA Dopamine Neuron Activity: Relevance to Schizophrenia. International Journal of Neuropsychopharmacology, 2021, 24, 344-353.	2.1	12
7	Orexin receptor antagonists reverse aberrant dopamine neuron activity and related behaviors in a rodent model of stress-induced psychosis. Translational Psychiatry, 2021, 11, 114.	4.8	17
8	Investigation of a Ventrodorsal Hippocampal Pathway to Regulate Cognition. Biological Psychiatry Global Open Science, 2021, 1, 83-84.	2.2	0
9	Mechanisms associated with the antidepressant-like effects of L-655,708. Neuropsychopharmacology, 2020, 45, 2289-2298.	5.4	9
10	Circuit-Based Interventions for the Treatment of Behaviors Relevant to Schizophrenia. Biological Psychiatry, 2020, 88, 673-674.	1.3	1
11	Developmental alterations in the transcriptome of three distinct rodent models of schizophrenia. PLoS ONE, 2020, 15, e0232200.	2.5	9
12	Stem Cells for Improving the Treatment of Neurodevelopmental Disorders. Stem Cells and Development, 2020, 29, 1118-1130.	2.1	7
13	Ketamine: Leading us into the future for development of antidepressants. Behavioural Brain Research, 2020, 383, 112532.	2.2	12
14	Adiponectin modulates ventral tegmental area dopamine neuron activity and anxiety-related behavior through AdipoR1. Molecular Psychiatry, 2019, 24, 126-144.	7.9	49
15	Adolescent stress contributes to aberrant dopamine signaling in a heritable rodent model of susceptibility. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 95, 109701.	4.8	4
16	Modulation of extrasynaptic GABAA alpha 5 receptors in the ventral hippocampus normalizes physiological and behavioral deficits in a circuit specific manner. Nature Communications, 2019, 10, 2819.	12.8	42
17	Region specific knockdown of Parvalbumin or Somatostatin produces neuronal and behavioral deficits consistent with those observed in schizophrenia. Translational Psychiatry, 2019, 9, 264.	4.8	49
18	40.1 TARGETING HIPPOCAMPAL INTERNEURON FUNCTION AS A THERAPEUTIC APPROACH FOR SCHIZOPHRENIA. Schizophrenia Bulletin, 2019, 45, S153-S153.	4.3	0

#	Article	IF	CITATIONS
19	Effect of estrous cycle on schizophrenia-like behaviors in MAM exposed rats. Behavioural Brain Research, 2019, 362, 258-265.	2.2	24
20	Ventral hippocampal overexpression of Cannabinoid Receptor Interacting Protein 1 (CNRIP1) produces a schizophrenia-like phenotype in the rat. Schizophrenia Research, 2019, 206, 263-270.	2.0	12
21	Embryonic stem cell transplants as a therapeutic strategy in a rodent model of autism. Neuropsychopharmacology, 2018, 43, 1789-1798.	5.4	14
22	Adolescent Synthetic Cannabinoid Exposure Produces Enduring Changes in Dopamine Neuron Activity in a Rodent Model of Schizophrenia Susceptibility. International Journal of Neuropsychopharmacology, 2018, 21, 393-403.	2.1	22
23	Convergent Inputs from the Hippocampus and Thalamus to the Nucleus Accumbens Regulate Dopamine Neuron Activity. Journal of Neuroscience, 2018, 38, 10607-10618.	3.6	42
24	Hippocampal Perineuronal Nets Are Required for the Sustained Antidepressant Effect of Ketamine. International Journal of Neuropsychopharmacology, 2017, 20, pyw095.	2.1	26
25	Stems Cells in Psychiatric Disease: Physiology, Pathophysiology & Treatment. Brain Research, 2017, 1655, 261.	2.2	0
26	Comparative analysis of MBD-seq and MeDIP-seq and estimation of gene expression changes in a rodent model of schizophrenia. Genomics, 2017, 109, 204-213.	2.9	21
27	Selective Pharmacological Augmentation of Hippocampal Activity Produces a Sustained Antidepressant-Like Response without Abuse-Related or Psychotomimetic Effects. International Journal of Neuropsychopharmacology, 2017, 20, 504-509.	2.1	25
28	Stem cell-derived interneuron transplants functionally integrate within the existing circuitry. Molecular Psychiatry, 2017, 22, 1369-1369.	7.9	0
29	Ketamine Corrects Stress-Induced Cognitive Dysfunction through JAK2/STAT3 Signaling in the Orbitofrontal Cortex. Neuropsychopharmacology, 2017, 42, 1220-1230.	5.4	34
30	Stem cell-derived interneuron transplants as a treatment for schizophrenia: preclinical validation in a rodent model. Molecular Psychiatry, 2017, 22, 1492-1501.	7.9	46
31	Cell-based therapies for the treatment of schizophrenia. Brain Research, 2017, 1655, 262-269.	2.2	12
32	Activation of a ventral hippocampus–medial prefrontal cortex pathway is both necessary and sufficient for an antidepressant response to ketamine. Molecular Psychiatry, 2016, 21, 1298-1308.	7.9	170
33	THC and endocannabinoids differentially regulate neuronal activity in the prefrontal cortex and hippocampus in the subchronic PCP model of schizophrenia. Journal of Psychopharmacology, 2016, 30, 169-181.	4.0	14
34	Schizophrenia-Like Phenotype Inherited by the F2 Generation of a Gestational Disruption Model of Schizophrenia. Neuropsychopharmacology, 2016, 41, 477-486.	5.4	25
35	Antidepressant-like cognitive and behavioral effects of acute ketamine administration associated with plasticity in the ventral hippocampus to medial prefrontal cortex pathway. Psychopharmacology, 2015, 232, 3123-3133.	3.1	55
36	Functional MRI during hyperbaric oxygen: Effects of oxygen on neurovascular coupling and BOLD fMRI signals. NeuroImage, 2015, 119, 382-389.	4.2	15

#	Article	IF	CITATIONS
37	Increasing Endocannabinoid Levels in the Ventral Pallidum Restore Aberrant Dopamine Neuron Activity in the Subchronic PCP Rodent Model of Schizophrenia. International Journal of Neuropsychopharmacology, 2015, 18, pyu035-pyu035.	2.1	23
38	Vagal Nerve Stimulation Reverses Aberrant Dopamine System Function in the Methylazoxymethanol Acetate Rodent Model of Schizophrenia. Journal of Neuroscience, 2014, 34, 9261-9267.	3.6	49
39	New approaches to the management of schizophrenia: focus on aberrant hippocampal drive of dopamine pathways. Drug Design, Development and Therapy, 2014, 8, 887.	4.3	28
40	An augmented dopamine system function is present prior to puberty in the methylazoxymethanol acetate rodent model of schizophrenia. Developmental Neurobiology, 2014, 74, 907-917.	3.0	24
41	Alterations in dopamine system function across the estrous cycle of the MAM rodent model of schizophrenia. Psychoneuroendocrinology, 2014, 47, 88-97.	2.7	31
42	A fundamental role for hippocampal parvalbumin in the dopamine hyperfunction associated with schizophrenia. Schizophrenia Research, 2014, 157, 238-243.	2.0	53
43	Hippocampal interneuron transplants reverse aberrant dopamine system function and behavior in a rodent model of schizophrenia. Molecular Psychiatry, 2013, 18, 1193-1198.	7.9	76
44	The MAM Rodent Model of Schizophrenia. Current Protocols in Neuroscience, 2013, 63, Unit9.43.	2.6	34
45	The lateral mesopontine tegmentum regulates both tonic and phasic activity of VTA dopamine neurons. Journal of Neurophysiology, 2013, 110, 2287-2294.	1.8	20
46	A loss of hippocampal perineuronal nets produces deficits in dopamine system function: relevance to the positive symptoms of schizophrenia. Translational Psychiatry, 2013, 3, e215-e215.	4.8	69
47	Hippocampal deep brain stimulation reverses physiological and behavioural deficits in a rodent model of schizophrenia. International Journal of Neuropsychopharmacology, 2013, 16, 1331-1339.	2.1	55
48	Gestational Methylazoxymethanol Acetate Administration Alters Proteomic and Metabolomic Markers of Hippocampal Glutamatergic Transmission. Neuropsychopharmacology, 2012, 37, 319-320.	5.4	7
49	Divergent activation of ventromedial and ventrolateral dopamine systems in animal models of amphetamine sensitization and schizophrenia. International Journal of Neuropsychopharmacology, 2012, 15, 69-76.	2.1	39
50	Distinct prefrontal cortical regions negatively regulate evoked activity in nucleus accumbens subregions. International Journal of Neuropsychopharmacology, 2012, 15, 1287-1294.	2.1	13
51	Aberrant Dopamine D2-Like Receptor Function in a Rodent Model of Schizophrenia. Journal of Pharmacology and Experimental Therapeutics, 2012, 343, 288-295.	2.5	21
52	Aversive Stimuli Alter Ventral Tegmental Area Dopamine Neuron Activity via a Common Action in the Ventral Hippocampus. Journal of Neuroscience, 2011, 31, 4280-4289.	3.6	148
53	Developmental pathology, dopamine, stress and schizophrenia. International Journal of Developmental Neuroscience, 2011, 29, 207-213.	1.6	91
54	Hippocampal dysregulation of dopamine system function and the pathophysiology of schizophrenia. Trends in Pharmacological Sciences, 2011, 32, 507-513.	8.7	283

#	Article	IF	CITATIONS
55	A Novel α5GABAAR-Positive Allosteric Modulator Reverses Hyperactivation of the Dopamine System in the MAM Model of Schizophrenia. Neuropsychopharmacology, 2011, 36, 1903-1911.	5.4	143
56	Selective deletion of the leptin receptor in dopamine neurons produces anxiogenic-like behavior and increases dopaminergic activity in amygdala. Molecular Psychiatry, 2011, 16, 1024-1038.	7.9	104
57	The Medial Prefrontal and Orbitofrontal Cortices Differentially Regulate Dopamine System Function. Neuropsychopharmacology, 2011, 36, 1227-1236.	5.4	84
58	Aberrant striatal plasticity is specifically associated with dyskinesia following levodopa treatment. Movement Disorders, 2010, 25, 1568-1576.	3.9	45
59	A Loss of Parvalbumin-Containing Interneurons Is Associated with Diminished Oscillatory Activity in an Animal Model of Schizophrenia. Journal of Neuroscience, 2009, 29, 2344-2354.	3.6	419
60	Gestational methylazoxymethanol acetate administration: A developmental disruption model of schizophrenia. Behavioural Brain Research, 2009, 204, 306-312.	2.2	204
61	Hippocampal dysfunction and disruption of dopamine system regulation in an animal model of schizophrenia. Neurotoxicity Research, 2008, 14, 97-104.	2.7	89
62	Summary of the 1st Schizophrenia International Research Society Conference oral sessions, Venice, Italy, June 21–25, 2008: The rapporteur reports. Schizophrenia Research, 2008, 105, 289-383.	2.0	5
63	Amphetamine Activation of Hippocampal Drive of Mesolimbic Dopamine Neurons: A Mechanism of Behavioral Sensitization. Journal of Neuroscience, 2008, 28, 7876-7882.	3.6	114
64	Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends in Neurosciences, 2007, 30, 220-227.	8.6	883
65	Aberrant Hippocampal Activity Underlies the Dopamine Dysregulation in an Animal Model of Schizophrenia. Journal of Neuroscience, 2007, 27, 11424-11430.	3.6	383
66	The CRF1receptor antagonist, antalarmin, reverses isolation-induced up-regulation of dopamine D2receptors in the amygdala and nucleus accumbens of fawn-hooded rats. European Journal of Neuroscience, 2006, 23, 3319-3327.	2.6	54
67	The Hippocampus Modulates Dopamine Neuron Responsivity by Regulating the Intensity of Phasic Neuron Activation. Neuropsychopharmacology, 2006, 31, 1356-1361.	5.4	227
68	The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5167-5172.	7.1	292
69	Chronic corticotropin-releasing factor type 1 receptor antagonism with antalarmin regulates the dopaminergic system of Fawn-Hooded rats. Journal of Neurochemistry, 2005, 94, 1523-1534.	3.9	11
70	Acute and Chronic Corticotropin-Releasing Factor 1 Receptor Blockade Inhibits Cocaine-Induced Dopamine Release: Correlation with Dopamine Neuron Activity. Journal of Pharmacology and Experimental Therapeutics, 2005, 314, 201-206.	2.5	65
71	Comparative analysis of hepatic ethanol metabolism in Fawn-Hooded and Wistar-Kyoto rats. Alcohol, 2003, 30, 75-79.	1.7	13
72	Atypical behavioural responses to CCK-B receptor ligands in Fawn-Hooded rats. Life Sciences, 2003, 74, 1-12.	4.3	8

#	Article	IF	CITATIONS
73	The neurochemical effects of anxiolytic drugs are dependent on rearing conditions in Fawn–Hooded rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2003, 27, 451-458.	4.8	7
74	The CRF1 receptor antagonist antalarmin reduces volitional ethanol consumption in isolation-reared fawn-hooded rats. Neuroscience, 2003, 117, 243-247.	2.3	68
75	The effect of isolation rearing on volitional ethanol consumption and central CCK/dopamine systems in Fawn-Hooded rats. Behavioural Brain Research, 2003, 141, 113-122.	2.2	41
76	The effect of chronic CRF1 receptor blockade on the central CCK systems of Fawn-Hooded rats. Regulatory Peptides, 2003, 116, 27-33.	1.9	7
77	Comparative analysis of the central CCK system in Fawn Hooded and Wistar Kyoto rats: extended localisation of CCK-A receptors throughout the rat brain using a novel radioligand. Regulatory Peptides, 2001, 99, 191-201.	1.9	24
78	CCK/dopamine interactions in Fawn-Hooded and Wistar–Kyoto rat brain. Peptides, 2000, 21, 379-386.	2.4	15