Gotzone Barandika

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5636392/publications.pdf

Version: 2024-02-01

64 papers 1,602 citations

236912 25 h-index 39 g-index

64 all docs

64
docs citations

times ranked

64

1852 citing authors

#	Article	IF	CITATIONS
1	A Dicubane-Like Tetrameric Nickel(II) Azido Complex. Angewandte Chemie - International Edition, 2000, 39, 344-347.	13.8	112
2	Crystal Structure and Spectroscopic and Magnetic Properties of the Manganese(II) and Copper(II) Azidoâ^'Tetramethylammonium Systems. Inorganic Chemistry, 1999, 38, 4647-4652.	4.0	98
3	Structural Analysis and Magnetic Properties of the 1D and 3D Compounds [Mn(dca)2nbipym] (M = Mn,) Tj ETQq1	4.8.7843	14 rgBT / <mark>0</mark> v
4	Dicubane-like Tetrameric Cobalt(II)â^'Pseudohalide Ferromagnetic Clusters. Inorganic Chemistry, 2001, 40, 4550-4555.	4.0	90
5	Weak M(II)-Azide-4,4â€~-Bipy Ferromagnets Based on Unusual Diamondoid (M = Mn) and 2D Arrays (M = Co,) Tj E	т <u>р</u> д1 1 о.:	784314 rg <mark>B</mark>
6	Synthesis and magnetostructural characterization of two ferromagnetic nickel(II) dimers. Journal of the Chemical Society Dalton Transactions, 1999, , 2971-2976.	1.1	58
7	Structural analysis and magnetic properties of the 1-D compounds [M(NCS)2bpa2] [Mâ€=â€Fe, Co, Ni and bpaâ€=â€1,2-bis(4-pyridyl)ethane]. Journal of the Chemical Society Dalton Transactions, 1999, , 1401-1406.	1.1	55
8	Structural analysis and magnetic properties of the 2-D compounds [M(N3)2(bpa)]n (Mâ€=â€Mn, Co or Ni;) Tj	Е <u>Ј</u> .§q0 0 0) rgBT /Over
9	Ferromagnetic interactions in the first dicubane-type complex involving cyanate ligand: [Co4(dpk-OH)2(dpk-OMe)2(NCO)4]. Chemical Communications, 2001, , 45-46.	4.1	53
10	New binder phases for the consolidation of TiB2 hardmetals. Materials Science & Dience & Dien	5.6	45
11	Structural analysis and magnetic properties of the dicubane-like tetramer [Ni(dpk·OH)(N3)]4·2H2O (dpkâ€=â€di-2-pyridyl ketone)â€Sâ€. Dalton Transactions RSC, 2000, , 29-34.	2.3	44
12	Solvent control in the synthesis of [Mn(NCS)2(bpe)2(H2O)2] and [Mn(NCS)2(bpe)1.5(CH3OH)]n (bpeâ€=â€1,2-bis(4-pyridyl)ethene): structural analysis and magnetic properties. Dalton Transactions RSC, 2000, , 1469-1473.	2.3	41
13	Towards the standardization of nanoecotoxicity testing: Natural organic matter  camouflages' the adverse effects of TiO2 and CeO2 nanoparticles on green microalgae. Science of the Total Environment, 2016, 543, 95-104.	8.0	37
14	Structure, tribocorrosion and biocide characterization of Ca, P and I containing TiO2 coatings developed by plasma electrolytic oxidation. Applied Surface Science, 2016, 367, 1-10.	6.1	35
15	Crystal structure and esr spectra of two M(II)-dpk-NCS coordination compounds (M=Mn, Cu and) Tj ETQq1 1 0.78	4314 rgBT 2.2	Г _Д Qverlock (
16	Self-assembly of iron TCPP (meso-tetra(4-carboxyphenyl)porphyrin) into a chiral 2D coordination polymer. Polyhedron, 2011, 30, 2711-2716.	2.2	34
17	Magnetostructural characterisation of two M–NCO–bpa polymers (M = Co, Mn and bpa =) Tj ETQq1 1 0.7843	314 rgBT /0 2.3	Oygrlock 10
18	Characterization of Ti-C-N coatings deposited on Ti6Al4V for biomedical applications. Journal of Inorganic Biochemistry, 2012, 117, 359-366.	3.5	33

#	Article	IF	CITATIONS
19	Thermal stability and crystallochemical analysis for Coll-based coordination polymers with TPP and TPPS porphyrins. CrystEngComm, 2013, 15, 4181.	2.6	32
20	Cu ^{II} -based metal–organic nanoballs for very rapid adsorption of dyes and iodine. CrystEngComm, 2016, 18, 1709-1712.	2.6	32
21	Structural analysis and magnetic properties of the 1D [Fe(dca)2bipy(H2O)] $\hat{A}\cdot 1/2$ H2O and the 3D [Ni(dca)2bipy] \hat{A} (dca = dicyanamide; bipy = 4,4 \hat{a} \in 2-bipyridine). Dalton Transactions RSC, 2002, , 4275-4280.	2.3	31
22	Structural Analysis, Spectroscopic, and Magnetic Properties of the 1D Triple-Bridged Compounds [M(dca)2(bpa)] (M = Mn, Fe, Co, Zn; dca = dicyanamide; bpa = 1,2-bis(4-pyridyl)ethane) and the 3D [Ni(dca)(bpa)2]dca·6H2O. Inorganic Chemistry, 2010, 49, 10445-10454.	4.0	31
23	Development of Ti–C–N coatings with improved tribological behavior and antibacterial properties. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 55, 75-86.	3.1	30
24	Fe-Ni-Ti binder phases for TiB2-based cermets: a thermodynamic approach. Scripta Materialia, 1998, 39, 1395-1400.	5.2	28
25	Solid-state transformation of the MOF [Ni2(bipy)1.5(PDC)2(H2O)2]Â-3.5H2O. CrystEngComm, 2011, 13, 6831.	2.6	28
26	Consolidation, microstructure and mechanical properties of newly developed TiB2-Based materials. Scripta Metallurgica Et Materialia, 1992, 26, 957-962.	1.0	24
27	Oxidation resistance and microstructure of the oxide layers for TiB2-based cermets. Journal of Materials Chemistry, 1998, 8, 1851-1857.	6.7	23
28	Heterogeneous catalytic properties of unprecedented $\hat{1}\frac{1}{4}$ -O-[FeTCPP] < sub>2 < /sub> dimers (H < sub>2 < /sub> TCPP = meso-tetra (4-carboxyphenyl) porphyrin): an unusual superhyperfine EPR structure. Dalton Transactions, 2015, 44, 213-222.	3.3	22
29	Crystal structure and magnetic properties of two metal–picolinate systems obtained from degradation of bis(2-pyridylketone) through reaction with Mn(II) and Cu(II). Polyhedron, 1999, 18, 1311-1316.	2.2	21
30	Ecotoxicity of multiwalled carbon nanotubes: Standardization of the dispersion methods and concentration measurements. Environmental Toxicology and Chemistry, 2015, 34, 1854-1862.	4.3	21
31	High-Performance Room Temperature Lithium-Ion Battery Solid Polymer Electrolytes Based on Poly(vinylidene fluoride- <i>co</i> -hexafluoropropylene) Combining Ionic Liquid and Zeolite. ACS Applied Materials & Diterfaces, 2021, 13, 48889-48900.	8.0	21
32	The role of hydrogen bonding on supramolecular assembly of the mercury coordination compounds and final structure influenced by solvent effect. Inorganica Chimica Acta, 2015, 429, 1-14.	2.4	19
33	Coordination and Crystallization Molecules: Their Interactions Affecting the Dimensionality of Metalloporphyrinic SCFs. Molecules, 2015, 20, 6683-6699.	3.8	18
34	Oxidation resistance of two TiB2-based cermets. Materials Research Bulletin, 1999, 34, 1001-1011.	5.2	15
35	Key challenges for nanotechnology: Standardization of ecotoxicity testing. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2017, 35, 104-126.	2.9	14
36	Highly thermally stable heterogeneous catalysts: study of OD and 3D porphyrinic MOFs. CrystEngComm, 2017, 19, 7244-7252.	2.6	14

#	Article	IF	CITATIONS
37	Cu ^{II} â€"PDC-bpe frameworks (PDC = 2,5-pyridinedicarboxylate, bpe = 1,2-di(4-pyridyl)ethylene): mapping of herringbone-type structures. CrystEngComm, 2014, 16, 8726-8735.	2.6	13
38	Fe–TPP Coordination Network with Metalloporphyrinic Neutral Radicals and <i>Face-to-Face</i> and <i>Edge-to-Face</i> π–π Stacking. Inorganic Chemistry, 2013, 52, 8074-8081.	4.0	12
39	Host–guest chemistry of Nill coordination compounds with PDC and (py)2CO: reversible crystal-to-amorphous transformations induced by solvent exchange. CrystEngComm, 2013, 15, 5134.	2.6	12
40	Colloidal stability and ecotoxicity of multiwalled carbon nanotubes: Influence of select organic matters. Environmental Toxicology and Chemistry, 2016, 35, 74-83.	4.3	12
41	Unprecedented coordination modes for PDC (pyridine-2,5-dicarboxylate) in polymorphic 3D heterobimetallic compounds \hat{l}_{\pm} - and \hat{l}^{2} -[MNa2(PDC)2(H2O)4], with M = Ni, Co. CrystEngComm, 2010, 12, 1784.	2.6	11
42	Coordination to metal centers: A tool to fix high energy conformations in organic molecules. Application to 2,4,4-trimethyl-1,5,9-triazacyclododec-1-ene and related macrocycles. Dalton Transactions, 2011, 40, 9504.	3.3	11
43	Thermal stability of ionic nets with Cull ions coordinated to di-2-pyridyl ketone: Reversible crystal-to-crystal phase transformation. Polyhedron, 2015, 92, 117-123.	2.2	11
44	Mother structures related to the hexagonal and cubic close packing in Cu ₂₄ clusters: solvent-influenced derivatives. CrystEngComm, 2015, 17, 3297-3304.	2.6	11
45	Encapsulation of \hat{I}^2 -alanine model amino-acid in zirconium(IV) metal organic frameworks: Defect engineering to improve host guest interactions. Journal of Inorganic Biochemistry, 2020, 205, 110977.	3.5	11
46	Consolidation, microstructure, and mechanical properties of a TiB2–Ni3Al composite. Materials Research Bulletin, 1999, 34, 53-61.	5.2	8
47	Water-induced phase transformation of a Cu ^{II} coordination framework with pyridine-2,5-dicarboxylate and di-2-pyridyl ketone: synchrotron radiation analysis. CrystEngComm, 2015, 17, 6346-6354.	2.6	7
48	ideal. Journal of Solid State Chemistry, 2015, 230, 191-198.	2.9	5
49	Double role of metalloporphyrins in catalytic bioinspired supramolecular metal–organic frameworks (SMOFs). IUCrJ, 2018, 5, 559-568.	2.2	4
50	Crystal Structures and Spectroscopic and Theoretical Properties of Pentacoordinate Nickel(II) Complexes Containing Tris(pyrazolyl)borate and Quinolinate Ligands. European Journal of Inorganic Chemistry, 2013, 2013, 4280-4290.	2.0	3
51	Aluminum Alkali Metalate Derivatives: Factors Driving the Final Nuclearity in the Crystal Form. European Journal of Inorganic Chemistry, 2017, 2017, 1994-2001.	2.0	3
52	Cationic Mn $2+IH + exchange$ leading a slow solid-state transformation of a 2D porphyrinic network at ambient conditions. Journal of Solid State Chemistry, 2017, 247, 161-167.	2.9	3
53	Structural Characterization and Mechanical Performance of Calcium Phosphate Scaffolds and Natural Bones: A Comparative Study. Journal of Applied Biomaterials and Biomechanics, 2010, 8, 159-165.	0.4	2
54	Thermal and Magnetic Diversity in the Behaviour of the Cu ^{II} â€bdcâ€bpa System: 1D, 2D and Interpenetrated 3D Frameworks. European Journal of Inorganic Chemistry, 2016, 2016, 4783-4791.	2.0	2

#	Article	lF	CITATIONS
55	Tribocorrosion and antibacterial behaviour of TiO $<$ inf $>$ 2 $<$ /inf $>$ coatings obtained by PEO technique. , 2014, , .		1
56	Multifunctionality of weak ferromagnetic porphyrin-based MOFs: selective adsorption in the liquid and gas phase. CrystEngComm, 2021, 23, 4205-4213.	2.6	0
57	A NEW TOOL TO CONNECT THE CONCEPTS OF LEADERSHIP AND MEMBERSHIP IN A MATERIALS SCIENCE RESEARCH GROUP: INCREASING THE SENSE OF BELONGING IN DOCTORATES. , 2016, , .		0
58	7P METHODOLOGY TO GENERATE CONVERS(A)CTIONS FOCUSED ON TRANSFORMATIONAL LEADERSHIP. , 2016, , .		0
59	INFLUENCE OF EMPIRICAL AND NON-EMPIRICAL BELIEFS ON EDUCATIONAL SKILLS: AN APPROACH FROM THE TRANSFORMATIONAL LEADERSHIP. EDULEARN Proceedings, 2016, , .	0.0	O
60	Metalloporphyrinic solid frameworks: catalytic activity. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e285-e285.	0.1	0
61	Crystal structure and thermal and mechanical properties of a herringbone-type Cull-based solid coordination framework. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e387-e388.	0.1	0
62	TRANSFERABLE SKILLS FOR PHD GRADUATES. EDULEARN Proceedings, 2020, , .	0.0	0
63	THESIS SUPERVISION AT THE UNIVERSITY OF THE BASQUE COUNTRY (UPV/EHU): INTERNAL AND EXTERNAL SUPERVISORS IN THE DIFFERENT FIELDS OF KNOWLEDGE. INTED Proceedings, 2022, , .	0.0	O
64	PROXIMITY OR LANGUAGE: FACTORS ATTRACTING INTERNATIONAL DOCTORAL STUDENTS TO THE UNIVERSITY OF THE BASQUE COUNTRY (UPV/EHU). EDULEARN Proceedings, 2022, , .	0.0	0