
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5635704/publications.pdf Version: 2024-02-01

ADI IUMDONEN

#	Article	IF	CITATIONS
1	Biogeography of rootâ€associated fungi in foundation grasses of North American plains. Journal of Biogeography, 2022, 49, 22-37.	3.0	17
2	Fire as a driver of fungal diversity — A synthesis of current knowledge. Mycologia, 2022, 114, 215-241.	1.9	36
3	<i>Darksidea phi</i> , sp. nov., a dark septate root-associated fungus in foundation grasses in North American Great Plains. Mycologia, 2022, 114, 254-269.	1.9	6
4	Bacterial but Not Fungal Rhizosphere Community Composition Differ among Perennial Grass Ecotypes under Abiotic Environmental Stress. Microbiology Spectrum, 2022, 10, e0239121.	3.0	8
5	Experimental drought reâ€ordered assemblages of rootâ€associated fungi across North American grasslands. Journal of Ecology, 2021, 109, 776-792.	4.0	17
6	Soil fungal communities are compositionally resistant to drought manipulations – Evidence from culture-dependent and culture-independent analyses. Fungal Ecology, 2021, 51, 101062.	1.6	3
7	Urbanization minimizes the effects of plant traits on soil provisioned ecosystem services across climatic regions. Global Change Biology, 2021, 27, 4139-4153.	9.5	12
8	Host-Environment Interplay Shapes Fungal Diversity in Mosquitoes. MSphere, 2021, 6, e0064621.	2.9	21
9	Long-term biodiversity intervention shapes health-associated commensal microbiota among urban day-care children. Environment International, 2021, 157, 106811.	10.0	36
10	Draft Genome Sequence of <i>Fusarium</i> sp. Strain DS 682, a Novel Fungal Isolate from the Grass Rhizosphere. Microbiology Resource Announcements, 2021, 10, .	0.6	7
11	Watershed and fire severity are stronger determinants of soil chemistry and microbiomes than within-watershed woody encroachment in a tallgrass prairie system. FEMS Microbiology Ecology, 2021, 97, .	2.7	5
12	Terabase Metagenome Sequencing of Grassland Soil Microbiomes. Microbiology Resource Announcements, 2020, 9, .	0.6	4
13	Improving Instructional Fitness Requires Change. BioScience, 2020, 70, 1027-1035.	4.9	1
14	Repeated fire shifts carbon and nitrogen cycling by changing plant inputs and soil decomposition across ecosystems. Ecological Monographs, 2020, 90, e01409.	5.4	47
15	Context dependent fungal and bacterial soil community shifts in response to recent wildfires in the Southern Appalachian Mountains. Forest Ecology and Management, 2019, 451, 117520.	3.2	35
16	Composition and Drivers of Gut Microbial Communities in Arctic-Breeding Shorebirds. Frontiers in Microbiology, 2019, 10, 2258.	3.5	49
17	Chestnuts bred for blight resistance depart nursery with distinct fungal rhizobiomes. Mycorrhiza, 2019, 29, 313-324.	2.8	12
18	Metaphenomic Responses of a Native Prairie Soil Microbiome to Moisture Perturbations. MSystems, 2019, 4, .	3.8	56

#	Article	IF	CITATIONS
19	Soil fungal community changes in response to long-term fire cessation and N fertilization in tallgrass prairie. Fungal Ecology, 2019, 41, 45-55.	1.6	25
20	DNA metabarcoding—Need for robust experimental designs to draw sound ecological conclusions. Molecular Ecology, 2019, 28, 1857-1862.	3.9	300
21	Microbial Ecology of Snow Reveals Taxa-Specific Biogeographical Structure. Microbial Ecology, 2019, 77, 946-958.	2.8	28
22	Rootstocks Shape the Rhizobiome: Rhizosphere and Endosphere Bacterial Communities in the Grafted Tomato System. Applied and Environmental Microbiology, 2019, 85, .	3.1	77
23	Nitrogen enrichment suppresses other environmental drivers and homogenizes salt marsh leaf microbiome. Ecology, 2018, 99, 1411-1418.	3.2	13
24	Over twenty years farmland reforestation decreases fungal diversity of soils, but stimulates the return of ectomycorrhizal fungal communities. Plant and Soil, 2018, 427, 231-244.	3.7	26
25	Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature, 2018, 553, 194-198.	27.8	325
26	Fungal Communities and Functional Guilds Shift Along an Elevational Gradient in the Southern Appalachian Mountains. Microbial Ecology, 2018, 76, 156-168.	2.8	51
27	The avian gut microbiota: community, physiology and function in wild birds. Journal of Avian Biology, 2018, 49, e01788.	1.2	194
28	Urbanization Reduces Transfer of Diverse Environmental Microbiota Indoors. Frontiers in Microbiology, 2018, 9, 84.	3.5	95
29	Half-lives of PAHs and temporal microbiota changes in commonly used urban landscaping materials. PeerJ, 2018, 6, e4508.	2.0	52
30	Soil microbial communities are shaped by vegetation type and park age in cities under cold climate. Environmental Microbiology, 2017, 19, 1281-1295.	3.8	114
31	Ectomycorrhizal Fungal Communities in Urban Parks Are Similar to Those in Natural Forests but Shaped by Vegetation and Park Age. Applied and Environmental Microbiology, 2017, 83, .	3.1	29
32	Recruitment and establishment of the gut microbiome in arctic shorebirds. FEMS Microbiology Ecology, 2017, 93, .	2.7	64
33	Biogeography of Root-Associated Fungal Endophytes. Ecological Studies, 2017, , 195-222.	1.2	30
34	The abundance of health-associated bacteria is altered in PAH polluted soils—Implications for health in urban areas?. PLoS ONE, 2017, 12, e0187852.	2.5	52
35	Vegetation Type and Age Drive Changes in Soil Properties, Nitrogen, and Carbon Sequestration in Urban Parks under Cold Climate. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	72
36	Habitat conditions and phenological tree traits overrule the influence of tree genotype in the needle mycobiome– <i><scp>P</scp>icea glauca</i> system at an arctic treeline ecotone. New Phytologist, 2016, 211, 1221-1231.	7.3	55

#	Article	IF	CITATIONS
37	Spatial and successional dynamics of microbial biofilm communities in a grassland stream ecosystem. Molecular Ecology, 2016, 25, 4674-4688.	3.9	59
38	Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil. FEMS Microbiology Ecology, 2016, 92, fiw170.	2.7	84
39	Polymerase matters: non-proofreading enzymes inflate fungal community richness estimates by up to 15A%. Fungal Ecology, 2015, 15, 86-89.	1.6	94
40	Fungi and Algae Co-Occur in Snow: An Issue of Shared Habitat or Algal Facilitation of Heterotrophs?. Arctic, Antarctic, and Alpine Research, 2015, 47, 729-749.	1.1	41
41	Moth Outbreaks Alter Root-Associated Fungal Communities in Subarctic Mountain Birch Forests. Microbial Ecology, 2015, 69, 788-797.	2.8	54
42	Analyses of Sporocarps, Morphotyped Ectomycorrhizae, Environmental ITS and LSU Sequences Identify Common Genera that Occur at a Periglacial Site. Journal of Fungi (Basel, Switzerland), 2015, 1, 76-93.	3.5	6
43	Phylogenetic diversity analyses reveal disparity between fungal and bacterial communities during microbial primary succession. Soil Biology and Biochemistry, 2015, 89, 52-60.	8.8	49
44	Soil fungal communities respond compositionally to recurring frequent prescribed burning in a managed southeastern US forest ecosystem. Forest Ecology and Management, 2015, 345, 1-9.	3.2	86
45	Fungal Community Shifts in Structure and Function across a Boreal Forest Fire Chronosequence. Applied and Environmental Microbiology, 2015, 81, 7869-7880.	3.1	119
46	Woody plant encroachment, and its removal, impact bacterial and fungal communities across stream and terrestrial habitats in a tallgrass prairie ecosystem. FEMS Microbiology Ecology, 2015, 91, fiv109.	2.7	34
47	Scraping the bottom of the barrel: are rare high throughput sequences artifacts?. Fungal Ecology, 2015, 13, 221-225.	1.6	196
48	Unraveling the Dark Septate Endophyte Functions: Insights from the Arabidopsis Model. , 2014, , 115-141.		27
49	FOAM (Functional Ontology Assignments for Metagenomes): a Hidden Markov Model (HMM) database with environmental focus. Nucleic Acids Research, 2014, 42, e145-e145.	14.5	90
50	Contrasting primary successional trajectories of fungi and bacteria in retreating glacier soils. Molecular Ecology, 2014, 23, 481-497.	3.9	208
51	The rich and the sensitive: diverse fungal communities change functionally with the warming Arctic. Molecular Ecology, 2014, 23, 3127-3129.	3.9	6
52	Analyses of ITS and LSU gene regions provide congruent results on fungal community responses. Fungal Ecology, 2014, 9, 65-68.	1.6	44
53	Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Diversity, 2014, 67, 11-19.	12.3	123
54	Tallgrass prairie soil fungal communities are resilient to climate change. Fungal Ecology, 2014, 10, 44-57.	1.6	41

#	Article	IF	CITATIONS
55	Mutualismââ,¬â€œparasitism paradigm synthesized from results of root-endophyte models. Frontiers in Microbiology, 2014, 5, 776.	3.5	106
56	Improved software detection and extraction of ITS1 and <scp>ITS</scp> 2 from ribosomal <scp>ITS</scp> sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution, 2013, 4, 914-919.	5.2	868
57	Deep Ion Torrent sequencing identifies soil fungal community shifts after frequent prescribed fires in a southeastern US forest ecosystem. FEMS Microbiology Ecology, 2013, 86, 557-566.	2.7	86
58	Arabidopsis thaliana model system reveals a continuum of responses to root endophyte colonization. Fungal Biology, 2013, 117, 250-260.	2.5	49
59	Twenty years of research on fungal–plant interactions on Lyman Glacier forefront – lessons learned and questions yet unanswered. Fungal Ecology, 2012, 5, 430-442.	1.6	41
60	Host Identity Impacts Rhizosphere Fungal Communities Associated with Three Alpine Plant Species. Microbial Ecology, 2012, 63, 682-693.	2.8	72
61	Septate endophyte colonization and host responses of grasses and forbs native to a tallgrass prairie. Mycorrhiza, 2012, 22, 109-119.	2.8	73
62	Species abundance distributions and richness estimations in fungal metagenomics - lessons learned from community ecology. Molecular Ecology, 2011, 20, 275-285.	3.9	158
63	Diverse Helotiales associated with the roots of three species of Arctic Ericaceae provide no evidence for host specificity. New Phytologist, 2011, 191, 515-527.	7.3	150
64	EcM fungal community structure, but not diversity, altered in a Pb-contaminated shooting range in a boreal coniferous forest site in Southern Finland. FEMS Microbiology Ecology, 2011, 76, 121-132.	2.7	35
65	Analysis of ribosomal RNA indicates seasonal fungal community dynamics in Andropogon gerardii roots. Mycorrhiza, 2011, 21, 453-464.	2.8	19
66	Massively parallel 454â€sequencing of fungal communities in <i>Quercus</i> spp. ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Molecular Ecology, 2010, 19, 41-53.	3.9	156
67	Isolation and morphological and metabolic characterization of common endophytes in annually burned tallgrass prairie. Mycologia, 2010, 102, 813-821.	1.9	110
68	Vertical distribution of fungal communities in tallgrass prairie soil. Mycologia, 2010, 102, 1027-1041.	1.9	118
69	Multi-element fingerprinting and high throughput sequencing identify multiple elements that affect fungal communities in <i>Quercus macrocarpa</i> foliage. Plant Signaling and Behavior, 2010, 5, 1157-1161.	2.4	4
70	Analysis of Rhizosphere Fungal Communities Using rRNA and rDNA. Soil Biology, 2009, , 29-40.	0.8	1
71	Seasonal and temporal dynamics of arbuscular mycorrhizal and dark septate endophytic fungi in a tallgrass prairie ecosystem are minimally affected by nitrogen enrichment. Mycorrhiza, 2008, 18, 145-155.	2.8	119
72	Soil Fungal Communities Underneath Willow Canopies on a Primary Successional Glacier Forefront: rDNA Sequence Results Can Be Affected by Primer Selection and Chimeric Data. Microbial Ecology, 2007, 53, 233-246.	2.8	57

ARI JUMPPONEN

#	Article	IF	CITATIONS
73	Can rDNA analyses of diverse fungal communities in soil and roots detect effects of environmental manipulations—a case study from tallgrass prairie. Mycologia, 2005, 97, 1177-1194.	1.9	12
74	Can rDNA analyses of diverse fungal communities in soil and roots detect effects of environmental manipulations–a case study from tallgrass prairie. Mycologia, 2005, 97, 1177-1194.	1.9	46
75	Fire, Hypogeous Fungi and Mycophagous Marsupials. Mycological Research, 2005, 109, 516-518.	2.5	8
76	Nitrogen enrichment causes minimal changes in arbuscular mycorrhizal colonization but shifts community composition?evidence from rDNA data. Biology and Fertility of Soils, 2005, 41, 217-224.	4.3	82
77	Foliar and fungal 15 N:14 N ratios reflect development of mycorrhizae and nitrogen supply during primary succession: testing analytical models. Oecologia, 2005, 146, 258-268.	2.0	122
78	Mycorrhiza-plant colonization patterns on a subalpine glacier forefront as a model system of primary succession. Mycorrhiza, 2005, 15, 405-416.	2.8	109
79	Seeking the elusive function of the root-colonising dark septate endophytic fungi. Studies in Mycology, 2005, 53, 173-189.	7.2	529
80	Mycorrhizal Fungi in Successional Environments. Mycology, 2005, , 139-168.	0.5	6
81	Changes in Ectomycorrhizal Colonization and Root Peroxidase Activity in Pinus sylvestris Nursery Seedlings Planted in Forest Humus. Scandinavian Journal of Forest Research, 2004, 19, 400-408.	1.4	2
82	Fungal colonization of shrub willow roots at the forefront of a receding glacier. Mycorrhiza, 2004, 14, 283-293.	2.8	77
83	Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analyses. New Phytologist, 2003, 158, 569-578.	7.3	190
84	Filamentous ascomycetes inhabiting the rhizoid environment of the liverwortCephaloziella variansin Antarctica are assessed by direct PCR and cloning. Mycologia, 2003, 95, 457-466.	1.9	25
85	Filamentous ascomycetes inhabiting the rhizoid environment of the liverwort Cephaloziella varians in Antarctica are assessed by direct PCR and cloning. Mycologia, 2003, 95, 457-66.	1.9	4
86	Occurrence of ectomycorrhizal fungi on the forefront of retreating Lyman Glacier (Washington,) Tj ETQq0 0 0 rg	BT/Qverlo	ock 10 Tf 50 2
87	Dark septate endophytes - are they mycorrhizal?. Mycorrhiza, 2001, 11, 207-211.	2.8	534
88	Utilization of major detrital substrates by dark-septate, root endophytes. Mycologia, 2000, 92, 230-232.	1.9	133
89	Ectomycorrhizal fungi in Lyman Lake Basin: a comparison between primary and secondary successional sites. Mycologia, 1999, 91, 575-582.	1.9	33
90	Spatial distribution of discrete RAPD phenotypes of a root endophytic fungus, Phialocephala fortinii ,	7.3	44

Spatial distribution of discrete RAPD phenotypes of a root endophytic fungus, Phialocephala fortinii , at a primary successional site on a glacier forefront. New Phytologist, 1999, 141, 333-344. 90 7.3

#	Article	IF	CITATIONS
91	Characterization of â€~safe sites' for pioneers in primary succession on recently deglaciated terrain. Journal of Ecology, 1999, 87, 98-105.	4.0	167
92	Ecosystem properties and microbial community changes in primary succession on a glacier forefront. Oecologia, 1999, 119, 239-246.	2.0	235
93	Ectomycorrhizal Fungi in Lyman Lake Basin: A Comparison between Primary and Secondary Successional Sites. Mycologia, 1999, 91, 575.	1.9	33
94	Dark septate endophytes: a review of facultative biotrophic root olonizing fungi. New Phytologist, 1998, 140, 295-310.	7.3	820
95	Effects of Established Willows on Primary Succession on Lyman Glacier Forefront, North Cascade Range, Washington, U.S.A.: Evidence for Simultaneous Canopy Inhibition and Soil Facilitation. Arctic and Alpine Research, 1998, 30, 31.	1.3	57
96	Precipitation, Not Land Use, Primarily Determines the Composition of Both Plant and Phyllosphere Fungal Communities. Frontiers in Fungal Biology, 0, 3, .	2.0	0