Jaroslav G Vostal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5635630/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Different levels of prion protein (PrPc) expression on hamster, mouse and human blood cells. British Journal of Haematology, 2000, 110, 472-480.	2.5	71
2	Increased expression of phosphatidylinositol-specific phospholipase C resistant prion proteins on the surface of activated platelets. British Journal of Haematology, 1998, 103, 276-282.	2.5	44
3	Liquid cold storage of platelets: A revitalized possible alternative for limiting bacterial contamination of platelet products. Transfusion Medicine Reviews, 1997, 11, 286-295.	2.0	33
4	Ultraviolet B light–exposed human platelets mediate acute lung injury in a twoâ€event mouse model of transfusion. Transfusion, 2011, 51, 2343-2357.	1.6	32
5	Biological action of nitric oxide donor compounds on platelets from patients with sickle cell disease. British Journal of Haematology, 2001, 112, 1048-1054.	2.5	25
6	Liquid cold storage of platelets: A revitalized possible alternative for limiting bacterial contamination of platelet products. Transfusion Medicine Reviews, 1997, 11, 286-295.	2.0	25
7	Automated cold temperature cycling improves in vitro platelet properties and in vivo recovery in a mouse model compared to continuous cold storage. Transfusion, 2016, 56, 24-32.	1.6	23
8	In vivo recovery of human platelets in severe combined immunodeficient mice as a measure of platelet damage. Transfusion, 2007, 47, 1540-1549.	1.6	22
9	Temperature cycling during platelet cold storage improves in vivo recovery and survival in healthy volunteers. Transfusion, 2018, 58, 25-33.	1.6	22
10	Cold temperatures reduce the sensitivity of stored platelets to disaggregating agents. Platelets, 2002, 13, 11-20.	2.3	21
11	Efficacy Evaluation of Current and Future Platelet Transfusion Products. Journal of Trauma, 2006, 60, S78-S82.	2.3	21
12	Inactivation of bacteria via photosensitization of vitamin K3 by UV-A light. FEMS Microbiology Letters, 2014, 358, 98-105.	1.8	19
13	Activation of platelet protein kinase C by ultraviolet light B mediates platelet transfusion–related acute lung injury in a twoâ€event animal model. Transfusion, 2013, 53, 722-731.	1.6	15
14	Temperature cycling improves in vivo recovery of coldâ€stored human platelets in a mouse model of transfusion. Transfusion, 2013, 53, 1178-1186.	1.6	14
15	Evaluation of Stem Cell-Derived Red Blood Cells as a Transfusion Product Using a Novel Animal Model. PLoS ONE, 2016, 11, e0166657.	2.5	13
16	Prothrombin plasma clearance is not mediated by hepatic asialoglycoprotein receptors. Thrombosis Research, 1991, 63, 299-309.	1.7	12
17	Human platelets pathogen reduced with riboflavin and ultraviolet light do not cause acute lung injury in a twoâ€event <scp>SCID</scp> mouse model. Transfusion, 2014, 54, 74-85.	1.6	12
18	Macrophage Depletion Mitigates Platelet Aggregate Formation in Splenic Marginal Zone and Alleviates LPS-Associated Thrombocytopenia in Rats. Frontiers in Medicine, 2019. 6. 300.	2.6	11

#	Article	IF	CITATIONS
19	Hemoglobin Aoand α-Crosslinked Hemoglobin (α-DBBF) Potentiate Agonist-Induced Platelet Aggregation Through the Platelet Thromboxane Receptor. Artificial Cells, Blood Substitutes, and Biotechnology, 1998, 26, 1-16.	0.9	10
20	Current and Future Cellular Transfusion Products. Clinics in Laboratory Medicine, 2010, 30, 443-452.	1.4	10
21	Host Platelets and, in Part, Neutrophils Mediate Lung Accumulation of Transfused UVB-Irradiated Human Platelets in a Mouse Model of Acute Lung Injury. PLoS ONE, 2012, 7, e44829.	2.5	10
22	Vitamin K5 is an efficient photosensitizer for ultraviolet A light inactivation of bacteria. FEMS Microbiology Letters, 2018, 365, .	1.8	8
23	Validation of a <scp>SCID</scp> mouse model for transfusion by concurrent comparison of circulation kinetics of human platelets, stored under various temperature conditions, between human volunteers and mice. Transfusion, 2020, 60, 2379-2388.	1.6	6
24	In Vitro and In Vivo Characterization of Ultraviolet Light C-Irradiated Human Platelets in a 2 Event Mouse Model of Transfusion. PLoS ONE, 2013, 8, e79869.	2.5	6
25	Inactivation of bacteria in plasma by photosensitizers benzophenone and vitamins K3, B1 and B6 with UV A light irradiation. Photodiagnosis and Photodynamic Therapy, 2020, 30, 101713.	2.6	5
26	P38 mitogen activated protein kinase inhibitor improves platelet in vitro parameters and in vivo survival in a SCID mouse model of transfusion for platelets stored at cold or temperature cycled conditions for 14 days. PLoS ONE, 2021, 16, e0250120.	2.5	5
27	Synergistic bactericidal effects of pairs of photosensitizer molecules activated by ultraviolet A light against bacteria in plasma. Transfusion, 2021, 61, 594-602.	1.6	4
28	Comparison of UVA and UVB Induced Lesions in Human Platelets Evaluated in an Animal Model Blood, 2007, 110, 2883-2883.	1.4	3
29	Expression of the cellular prion protein affects posttransfusion recovery and survival of red blood cells in mice. Transfusion, 2015, 55, 2590-2596.	1.6	2
30	FDA contributions to reduction of bacterial contamination in platelet products within the United States. Transfusion, 2013, 53, 232-233.	1.6	1
31	Viral reduction of human blood by ultraviolet Aâ€photosensitized vitamin K5. Journal of Medical Virology, 2021, 93, 5134-5140.	5.0	0
32	Platelet Cellular Prion Protein (PRPC) Is Associated with alpha Granules Blood, 2004, 104, 3882-3882.	1.4	0
33	A Novel Animal Model for Detecting Damage to Human Platelet Transfusion Products: In Vivo Recovery and Survival in Severe Combined Immunodeficient Mice Blood, 2005, 106, 1891-1891.	1.4	0
34	Detection of UV Induced Damage to Human Platelets by an In Vivo Animal Model Blood, 2006, 108, 582-582.	1.4	0