List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5635568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	No growth stimulation of tropical trees by 150Âyears of CO2 fertilization but water-use efficiencyÂincreased. Nature Geoscience, 2015, 8, 24-28.	12.9	348
2	Community assembly along a soil depth gradient: contrasting patterns of plant trait convergence and divergence in <scp>a M</scp> editerranean rangeland. Journal of Ecology, 2012, 100, 1422-1433.	4.0	303
3	Tree allometry in Central Africa: Testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. Forest Ecology and Management, 2013, 305, 29-37.	3.2	152
4	Tropical forest recovery from logging: a 24 year silvicultural experiment from Central Africa. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120302.	4.0	110
5	Potential of tree-ring analysis in a wet tropical forest: A case study on 22 commercial tree species in Central Africa. Forest Ecology and Management, 2014, 323, 65-78.	3.2	89
6	Panâ€ŧropical prediction of forest structure from the largest trees. Global Ecology and Biogeography, 2018, 27, 1366-1383.	5.8	78
7	Geological Substrates Shape Tree Species and Trait Distributions in African Moist Forests. PLoS ONE, 2012, 7, e42381.	2.5	75
8	Environmental filtering of dense-wooded species controls above-ground biomass stored in African moist forests. Journal of Ecology, 2011, 99, 981-990.	4.0	72
9	Height competition between Quercus petraea and Fagus sylvatica natural regeneration in mixed and uneven-aged stands. Forest Ecology and Management, 2013, 304, 391-398.	3.2	70
10	Patterns of tree species composition across tropical African forests. Journal of Biogeography, 2014, 41, 2320-2331.	3.0	69
11	Silvicultural disturbance has little impact on tree species diversity in a Central African moist forest. Forest Ecology and Management, 2013, 304, 322-332.	3.2	67
12	Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries. Biogeosciences, 2016, 13, 1571-1585.	3.3	66
13	Limitations to sustainable frankincense production: blocked regeneration, high adult mortality and declining populations. Journal of Applied Ecology, 2012, 49, 164-173.	4.0	62
14	Vegetation structure and greenness in Central Africa from Modis multi-temporal data. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120309.	4.0	59
15	A new insight in the structure, composition and functioning of central African moist forests. Forest Ecology and Management, 2014, 329, 195-205.	3.2	55
16	An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants. Ecology and Evolution, 2014, 4, 2799-2811.	1.9	53
17	Unveiling African rainforest composition and vulnerability to global change. Nature, 2021, 593, 90-94.	27.8	53
18	Taller trees, denser stands and greater biomass in semi-deciduous than in evergreen lowland central African forests. Forest Ecology and Management, 2016, 374, 42-50.	3.2	48

#	Article	IF	CITATIONS
19	Does biomass growth increase in the largest trees? Flaws, fallacies and alternative analyses. Functional Ecology, 2017, 31, 568-581.	3.6	48
20	Annual cycles are the most common reproductive strategy in African tropical tree communities. Biotropica, 2018, 50, 418-430.	1.6	48
21	No evidence for consistent longâ€ŧerm growth stimulation of 13 tropical tree species: results from treeâ€ring analysis. Global Change Biology, 2015, 21, 3762-3776.	9.5	47
22	Present-day central African forest is a legacy of the 19th century human history. ELife, 2017, 6, .	6.0	46
23	New Evidence of Human Activities During the Holocene in the Lowland Forests of the Northern Congo Basin. Radiocarbon, 2014, 56, 209-220.	1.8	44
24	A regional allometry for the Congo basin forests based on the largest ever destructive sampling. Forest Ecology and Management, 2018, 430, 228-240.	3.2	44
25	Combined effects of climate, resource availability, and plant traits on biomass produced in a Mediterranean rangeland. Ecology, 2014, 95, 737-748.	3.2	41
26	Floristic evidence for alternative biome states in tropical Africa. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28183-28190.	7.1	41
27	Terrestrial photogrammetry: a nonâ€destructive method for modelling irregularly shaped tropical tree trunks. Methods in Ecology and Evolution, 2017, 8, 460-471.	5.2	40
28	Frankincense in peril. Nature Sustainability, 2019, 2, 602-610.	23.7	39
29	Tree allometry for estimation of carbon stocks in African tropical forests. Forestry, 2016, 89, 446-455.	2.3	38
30	Conservation value of tropical forests: Distance to human settlements matters more than management in Central Africa. Biological Conservation, 2020, 241, 108351.	4.1	38
31	How Can Remote Sensing Help Monitor Tropical Moist Forest Degradation?—A Systematic Review. Remote Sensing, 2020, 12, 1087.	4.0	37
32	Wood Specific Gravity Variations and Biomass of Central African Tree Species: The Simple Choice of the Outer Wood. PLoS ONE, 2015, 10, e0142146.	2.5	36
33	Soil seed bank characteristics in two central African forest types and implications for forest restoration. Forest Ecology and Management, 2018, 409, 766-776.	3.2	34
34	Measuring the importance of competition: a new formulation of the problem. Journal of Ecology, 2010, 98, 1-6.	4.0	32
35	Detecting large-scale diversity patterns in tropical trees: Can we trust commercial forest inventories?. Forest Ecology and Management, 2011, 261, 187-194.	3.2	30
36	The light-deficient climates of western Central African evergreen forests. Environmental Research Letters, 2019, 14, 034007.	5.2	30

#	Article	IF	CITATIONS
37	Perceptions of ecosystem services provided by tropical forests to local populations in Cameroon. Ecosystem Services, 2019, 38, 100956.	5.4	29
38	Plant demographic and functional responses to management intensification: A longâ€ŧerm study in a Mediterranean rangeland. Journal of Ecology, 2018, 106, 1363-1376.	4.0	28
39	Differential impacts of plant interactions on herbaceous species recruitment: disentangling factors controlling emergence, survival and growth of seedlings. Oecologia, 2009, 159, 817-825.	2.0	27
40	Quantifying trait selection driving community assembly: a test in herbaceous plant communities under contrasted land use regimes. Oikos, 2012, 121, 1103-1111.	2.7	27
41	Tree Age Distributions Reveal Large-Scale Disturbance-Recovery Cycles in Three Tropical Forests. Frontiers in Plant Science, 2016, 7, 1984.	3.6	27
42	Pantropical variability in tree crown allometry. Global Ecology and Biogeography, 2021, 30, 459-475.	5.8	27
43	The determinants of tropical forest deciduousness: disentangling the effects of rainfall and geology in central Africa. Journal of Ecology, 2016, 104, 924-935.	4.0	26
44	Tree roots can penetrate deeply in African semi-deciduous rain forests: evidence from two common soil types. Journal of Tropical Ecology, 2015, 31, 13-23.	1.1	25
45	The influence of spatially structured soil properties on tree community assemblages at a landscape scale in the tropical forests of southern Cameroon. Journal of Ecology, 2017, 105, 354-366.	4.0	24
46	New data on the recent history of the littoral forests of southern Cameroon: an insight into the role of historical human disturbances on the current forest composition. Plant Ecology and Evolution, 2015, 148, 19-28.	0.7	23
47	Tropical tree assembly depends on the interactions between successional and soil filtering processes. Global Ecology and Biogeography, 2014, 23, 1440-1449.	5.8	22
48	How Tightly Linked Are Pericopsis elata (Fabaceae) Patches to Anthropogenic Disturbances in Southeastern Cameroon?. Forests, 2015, 6, 293-310.	2.1	20
49	Enrichment of Central African logged forests with high-value tree species: testing a new approach to regenerating degraded forests. International Journal of Biodiversity Science, Ecosystem Services & Management, 2016, 12, 83-95.	2.9	19
50	Enrichment of Logging Gaps with a High Conservation Value Species (Pericopsis elata) in a Central African Moist Forest. Forests, 2014, 5, 3031-3047.	2.1	18
51	A sharp floristic discontinuity revealed by the biogeographic regionalization of African savannas. Journal of Biogeography, 2019, 46, 454-465.	3.0	17
52	Using tree-ring data to improve timber-yield projections for African wet tropical forest tree species. Forest Ecology and Management, 2017, 400, 396-407.	3.2	16
53	Differential Performance between Two Timber Species in Forest Logging Gaps and in Plantations in Central Africa. Forests, 2015, 6, 380-394.	2.1	15
54	Architectural differences associated with functional traits among 45 coexisting tree species in Central Africa. Functional Ecology, 2018, 32, 2583-2593.	3.6	15

#	Article	IF	CITATIONS
55	The limited contribution of large trees to annual biomass production in an oldâ€growth tropical forest. Ecological Applications, 2018, 28, 1273-1281.	3.8	14
56	The size at reproduction of canopy tree species in central Africa. Biotropica, 2018, 50, 465-476.	1.6	14
57	What controls local-scale aboveground biomass variation in central Africa? Testing structural, composition and architectural attributes. Forest Ecology and Management, 2018, 429, 570-578.	3.2	14
58	Daily Activity Patterns and Co-Occurrence of Duikers Revealed by an Intensive Camera Trap Survey across Central African Rainforests. Animals, 2020, 10, 2200.	2.3	14
59	Dissecting the difference in tree species richness between Africa and South America. Proceedings of the United States of America, 2022, 119, e2112336119.	7.1	14
60	Description of a new procedure to estimate the carbon stocks of all forest pools and impact assessment of methodological choices on the estimates. European Journal of Forest Research, 2013, 132, 565-577.	2.5	13
61	Refining Species Traits in a Dynamic Vegetation Model to Project the Impacts of Climate Change on Tropical Trees in Central Africa. Forests, 2018, 9, 722.	2.1	13
62	Wildlife trail or systematic? Camera trap placement has little effect on estimates of mammal diversity in a tropical forest in Gabon. Remote Sensing in Ecology and Conservation, 2021, 7, 321-336.	4.3	13
63	Leveraging Signatures of Plant Functional Strategies in Wood Density Profiles of African Trees to Correct Mass Estimations From Terrestrial Laser Data. Scientific Reports, 2020, 10, 2001.	3.3	11
64	Quantifying the Use of Forest Ecosystem Services by Local Populations in Southeastern Cameroon. Sustainability, 2020, 12, 2505.	3.2	11
65	Tropical tree allometry and crown allocation, and their relationship with species traits in central Africa. Forest Ecology and Management, 2021, 493, 119262.	3.2	11
66	Deforestation and timber production in Congo after implementation of sustainable management policy: A reaction to the article by J.S. Brandt, C. Nolte and A. Agrawal (Land Use Policy 52:15–22). Land Use Policy, 2017, 65, 62-65.	5.6	10
67	Trends in tropical tree growth: reâ€analyses confirm earlier findings. Global Change Biology, 2017, 23, 1761-1762.	9.5	10
68	Growth determinants of timber species Triplochiton scleroxylon and implications for forest management in central Africa. Forest Ecology and Management, 2019, 437, 211-221.	3.2	9
69	Réviser les tarifs de cubage pour mieux gérer les forêts du Cameroun. Bois Et Forets Des Tropiques, 2013, 317, 35.	0.2	9
70	Height-diameter allometric equations of an emergent tree species from the Congo Basin. Forest Ecology and Management, 2022, 504, 119822.	3.2	9
71	Competition depends more on the functional structure of plant community than on standing biomass. Community Ecology, 2012, 13, 21-29.	0.9	7
72	A whole-plant functional scheme predicting the early growth of tropical tree species: evidence from 15 tree species in Central Africa. Trees - Structure and Function, 2019, 33, 491-505.	1.9	7

#	Article	IF	CITATIONS
73	Testing the divergent adaptation of two congeneric tree species on a rainfall gradient using ecoâ€physioâ€morphological traits. Biotropica, 2019, 51, 364-377.	1.6	6
74	Highlighting convergent evolution in morphological traits in response to climatic gradient in African tropical tree species: The case of genus <i>Guibourtia</i> Benn Ecology and Evolution, 2019, 9, 13114-13126.	1.9	6
75	Error in the estimation of emission factors for forest degradation in central Africa. Journal of Forest Research, 2016, 21, 23-30.	1.4	5
76	Latitudinal shift in the timing of flowering of tree species across tropical Africa: insights from field observations and herbarium collections. Journal of Tropical Ecology, 2020, 36, 159-173.	1.1	5
77	Phénologie et diamètre de fructification du wengé, Millettia laurentii De Wild.: implications pour la gestion. Bois Et Forets Des Tropiques, 2012, 312, 31.	0.2	5
78	Ecological niche divergence associated with species and populations differentiation in Erythrophleum (Fabaceae, Caesalpinioideae). Plant Ecology and Evolution, 2019, 152, 41-52.	0.7	5
79	Land use has little influence on the soil seed bank in a central African moist forest. Biotropica, 2022, 54, 100-112.	1.6	5
80	Climatic niche lability but growth form conservatism in the African woody flora. Ecology Letters, 2022, 25, 1164-1176.	6.4	5
81	VARIATIONS SAISONNIÃ^RES DE LA CROISSANCE DIAMÉTRIQUE ET DES PHÉNOLOGIES FOLIAIRE ET REPRODUCTIVE DE TROIS ESPÃ^CES LIGNEUSES COMMERCIALES D'AFRIQUE CENTRALE. Bois Et Forets Des Tropiques, 2017, 330, 3.	0.2	4
82	MODÉLISER LA CROISSANCE DE QUATRE ESSENCES POUR AMÉLIORER LA GESTION FORESTIÃ^RE AU CAMEROUN. Bois Et Forets Des Tropiques, 2015, 325, 5.	0.2	3
83	Light Response of Seedlings of a Central African Timber Tree Species, <i>Lophira alata</i> (Ochnaceae), and the Definition of Light Requirements. Biotropica, 2015, 47, 681-688.	1.6	2
84	Comparative analysis of two sister Erythrophleum species (Leguminosae) reveal contrasting transcriptome-wide responses to early drought stress. Gene, 2019, 694, 50-62.	2.2	2
85	Towards improving the assessment of rainforest carbon: Complementary evidence from repeated diameter measurements and dated wood. Dendrochronologia, 2020, 62, 125723.	2.2	2
86	Variation in Onset of Leaf Unfolding and Wood Formation in a Central African Tropical Tree Species. Frontiers in Forests and Global Change, 2021, 4, .	2.3	1