Solveig Tosi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5635413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fungi isolated from Antarctic mosses. Polar Biology, 2002, 25, 262-268.	0.5	166
2	Biodiversity, evolution and adaptation of fungi in extreme environments. Plant Biosystems, 2013, 147, 237-246.	0.8	104
3	Fungal Enzymes Involved in Plastics Biodegradation. Microorganisms, 2022, 10, 1180.	1.6	65
4	<i>In vitro</i> evaluation of nematophagous activity of fungal isolates. Journal of Basic Microbiology, 2014, 54, 1-5.	1.8	58
5	Evaluating the survival and environmental fate of the biocontrol agent <i>Trichoderma atroviride</i> SC1 in vineyards in northern Italy. Journal of Applied Microbiology, 2009, 106, 1549-1557.	1.4	56
6	Fungi as a toolbox for sustainable bioremediation of pesticides in soil and water. Plant Biosystems, 2018, 152, 474-488.	0.8	55
7	Temperature downshift induces antioxidant response in fungi isolated from Antarctica. Extremophiles, 2009, 13, 273-281.	0.9	47
8	Ecophysiological requirements and survival of a <i>Trichoderma atroviride</i> isolate with biocontrol potential. Journal of Basic Microbiology, 2008, 48, 269-277.	1.8	45
9	Friedmanniomyces endolithicus (Fungi, Hyphomycetes), anamgen. and sp. nov., from continental Antarctica. Nova Hedwigia, 1999, 68, 175-181.	0.2	45
10	Triterpenoid Glycosides from <i>Medicago sativa</i> as Antifungal Agents against <i>Pyricularia oryzae</i> . Journal of Agricultural and Food Chemistry, 2014, 62, 11030-11036.	2.4	42
11	Antioxidant enzyme activity of filamentous fungi isolated from Livingston Island, Maritime Antarctica. Polar Biology, 2010, 33, 1227-1237.	0.5	39
12	Ecology and biology of microfungi from Antarctic rocks and soils. Italian Journal of Zoology, 2000, 67, 163-167.	0.6	36
13	Sink or swim: Updated knowledge on marine fungi associated with wood substrates in the Mediterranean Sea and hints about their potential to remediate hydrocarbons. Progress in Oceanography, 2015, 137, 140-148.	1.5	36
14	Adaptation of fungi, including yeasts, to cold environments. Plant Biosystems, 2013, 147, 247-258.	0.8	34
15	Antifungal Acylcyclopentenediones from Fruiting Bodies of Hygrophorus chrysodon. Journal of Natural Products, 2007, 70, 137-139.	1.5	33
16	Isolation and Identification of Filamentous Fungi from Island Livingston, Antarctica. Biotechnology and Biotechnological Equipment, 2009, 23, 267-270.	0.5	33
17	Hydrocarbon Degradation and Enzyme Activities of Aspergillus oryzae and Mucor irregularis Isolated from Nigerian Crude Oil-Polluted Sites. Microorganisms, 2020, 8, 1912.	1.6	29
18	Phytochemical Study of the Ecuadorian Species Lepechinia mutica (Benth.) Epling and High Antifungal Activity of Carnosol against Pyricularia oryzae. Pharmaceuticals, 2018, 11, 33.	1.7	28

SOLVEIG TOSI

#	Article	IF	CITATIONS
19	Collagenase production in an antarctic strain of Arthrobotrys tortor Jarowaja. Mycopathologia, 2002, 153, 157-162.	1.3	25
20	A metagenomic-based, cross-seasonal picture of fungal consortia associated with Italian soils subjected to different agricultural managements. Fungal Ecology, 2017, 30, 1-9.	0.7	25
21	Extracellular Enzymes and Bioactive Compounds from Antarctic Terrestrial Fungi for Bioprospecting. International Journal of Environmental Research and Public Health, 2020, 17, 6459.	1.2	23
22	Chemical composition and antimicrobial activity of Phyllanthus muellerianus (Kuntze) Excel essential oil. Journal of Ethnopharmacology, 2012, 142, 657-662.	2.0	22
23	Trichoderma: Evaluation of Its Degrading Abilities for the Bioremediation of Hydrocarbon Complex Mixtures. Applied Sciences (Switzerland), 2020, 10, 3152.	1.3	20
24	Influence of L-galactonic acid gamma-lactone on ascorbate production in some yeasts. Antonie Van Leeuwenhoek, 1997, 71, 277-280.	0.7	19
25	Antimicrobial and phytochemical properties of stem bark extracts from Piptadeniastrum africanum (Hook f.) Brenan. Industrial Crops and Products, 2013, 43, 612-616.	2.5	19
26	High spots for diversity of soil and litter microfungi in Italy. Plant Biosystems, 2011, 145, 969-977.	0.8	17
27	Phytochemical researches and antimicrobial activity of Clinopodium nubigenum Kunth (Kuntze) raw extracts. Revista Brasileira De Farmacognosia, 2011, 21, 850-855.	0.6	15
28	A meta-barcoding analysis of soil mycobiota of the upper Andean Colombian agro-environment. Scientific Reports, 2019, 9, 10085.	1.6	14
29	Chemical Composition and Antimicrobial Activity of the Volatile Fractions from Leaves and Flowers of the Wild Iraqi Kurdish Plant <i>Prangos peucedanifolia</i> <scp>Fenzl</scp> . Chemistry and Biodiversity, 2013, 10, 274-280.	1.0	11
30	Soil Microfungi of the Colombian Natural Regions. International Journal of Environmental Research and Public Health, 2020, 17, 8311.	1.2	9
31	Studying trophic interactions between a plant pathogen and two different antagonistic microorganisms using a ¹³ Câ€labeled compound and isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 2012, 26, 510-516.	0.7	8
32	Chemical Composition and Antifungal Activity of Essential Oils from Flowers, Leaves, Rhizomes, and Bulbs of the Wild Iraqi Kurdish Plant <i>Iris Persica</i> . Natural Product Communications, 2017, 12, 1934578X1701200.	0.2	8
33	Fungal biodiversity in the periglacial soil of DosdÃ Glacier (Valtellina, Northern Italy). Journal of Basic Microbiology, 2016, 56, 263-274.	1.8	7
34	Composition, Antifungal and Antiproliferative Activities of the Hydrodistilled Oils from Leaves and Flower Heads of <i>Pterocephalus nestorianus</i> N <scp>ábělek</scp> . Chemistry and Biodiversity, 2017, 14, e1700009.	1.0	7
35	The Mycobiota of High Altitude Pear Orchards Soil in Colombia. Biology, 2021, 10, 1002.	1.3	7
36	Soil Fungal Diversity of the Aguarongo Andean Forest (Ecuador). Biology, 2021, 10, 1289.	1.3	6

SOLVEIG TOSI

#	Article	IF	CITATIONS
37	Lipophilic Components from the Ecuadorian Plant Schistocarpha Eupatorioides. Natural Product Communications, 2011, 6, 1934578X1100600.	0.2	5
38	Comparison of the oxidative stress response of two Antarctic fungi to different growth temperatures. Polish Polar Research, 2017, 38, 393-408.	0.9	5
39	Isotope ratio mass spectrometry identifies soil microbial biocontrol agents having trophic relations with the plant pathogen Armillaria mellea. Applied Soil Ecology, 2013, 64, 142-151.	2.1	3
40	Diversity of Mycobiota Associated with the Cereal Cyst Nematode Heterodera filipjevi Originating from Some Localities of the Pannonian Plain in Serbia. Biology, 2021, 10, 283.	1.3	3
41	Taxonomic diversity of fungi associated with some PCN populations from Serbia. Pesticidi I Fitomedicina = Pesticides and Phytomedicine, 2012, 27, 41-47.	0.1	1
42	Lactarane Sesquiterpenes from the European Mushrooms Lactarius aurantiacus, L. subdulcis, and Russula sanguinaria. Natural Product Communications, 2014, 9, 1934578X1400900.	0.2	0