Lars Nilsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5635206/publications.pdf

Version: 2024-02-01

331670 330143 1,520 65 21 37 citations h-index g-index papers 67 67 67 1319 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	A criterion for when an emulsion drop undergoing turbulent deformation has reached a critically deformed state. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129213.	4.7	10
2	Investigating the effect of powder manufacturing and reconstitution on casein micelles using asymmetric flow field-flow fractionation (AF4) and transmission electron microscopy. Food Research International, 2021, 139, 109939.	6.2	6
3	Asymmetric flow field-flow fractionation coupled to surface plasmon resonance detection for analysis of therapeutic proteins in blood serum. Analytical and Bioanalytical Chemistry, 2021, 413, 117-127.	3.7	14
4	Modification of EDC method for increased labeling efficiency and characterization of low-content protein in gum acacia using asymmetrical flow field-flow fractionation coupled with multiple detectors. Analytical and Bioanalytical Chemistry, 2021, 413, 6313-6320.	3.7	2
5	Revisiting the dynamics of proteins during milk powder hydration using asymmetric flow field-flow fractionation (AF4). Current Research in Food Science, 2021, 4, 83-92.	5.8	6
6	The Impact of Glycerol on an Affibody Conformation and Its Correlation to Chemical Degradation. Pharmaceutics, 2021, 13, 1853.	4.5	7
7	Separation and zeta-potential determination of proteins and their oligomers using electrical asymmetrical flow field-flow fractionation (EAF4). Journal of Chromatography A, 2020, 1633, 461625.	3.7	15
8	First Evidence of Acyl-Hydrolase/Lipase Activity From Human Probiotic Bacteria: Lactobacillus rhamnosus GG and Bifidobacterium longum NCC 2705. Frontiers in Microbiology, 2020, 11, 1534.	3.5	13
9	Fractionation of Nanoparticle Matter in Red Wines Using Asymmetrical Flow Field-Flow Fractionation. Journal of Agricultural and Food Chemistry, 2020, 68, 14564-14576.	5.2	7
10	Interaction between Myricetin Aggregates and Lipase under Simplified Intestinal Conditions. Foods, 2020, 9, 777.	4.3	3
11	Interaction of quercetin and epigallocatechin gallate (EGCG) aggregates with pancreatic lipase under simplified intestinal conditions. PLoS ONE, 2020, 15, e0224853.	2.5	8
12	Characterization of binding between model protein GA-Z and human serum albumin using asymmetrical flow field-flow fractionation and small angle X-ray scattering. PLoS ONE, 2020, 15, e0242605.	2.5	4
13	Title is missing!. , 2020, 15, e0224853.		O
14	Title is missing!. , 2020, 15, e0224853.		0
15	Title is missing!. , 2020, 15, e0224853.		0
16	Title is missing!. , 2020, 15, e0224853.		0
17	Title is missing!. , 2020, 15, e0242605.		O
18	Title is missing!. , 2020, 15, e0242605.		0

#	Article	IF	Citations
19	Title is missing!. , 2020, 15, e0242605.		O
20	Title is missing!. , 2020, 15, e0242605.		0
21	Characterization of molecular properties of wheat starch from three different types of breads using asymmetric flow field-flow fractionation (AF4). Food Chemistry, 2019, 298, 125090.	8.2	9
22	Comparison between conventional and frit-inlet channels in separation of biopolymers by asymmetric flow field-flow fractionation. Analyst, The, 2019, 144, 4559-4568.	3.5	11
23	Fractionation and characterization of starch granules using field-flow fractionation (FFF) and differential scanning calorimetry (DSC). Analytical and Bioanalytical Chemistry, 2019, 411, 3665-3674.	3.7	14
24	Physicochemical and structural properties of starch from five Andean crops grown in Bolivia. International Journal of Biological Macromolecules, 2019, 125, 829-838.	7.5	46
25	Aggregation and microstructure of cereal \hat{l}^2 -glucan and its association with other biomolecules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 560, 402-409.	4.7	29
26	Characterization of non-solvent precipitated starch using asymmetrical flow field-flow fractionation coupled with multiple detectors. Carbohydrate Polymers, 2019, 206, 21-28.	10.2	6
27	Study on oligomerization of glutamate decarboxylase from Lactobacillus brevis using asymmetrical flow field-flow fractionation (AF4) with light scattering techniques. Analytical and Bioanalytical Chemistry, 2018, 410, 451-458.	3.7	6
28	An alternative method for calibration of flow field flow fractionation channels for hydrodynamic radius determination: The nanoemulsion method (featuring multi angle light scattering). Journal of Chromatography A, 2018, 1533, 155-163.	3.7	4
29	Co-elution phenomena in polymer mixtures studied by asymmetric flow field-flow fractionation. Journal of Chromatography A, 2018, 1532, 251-256.	3.7	13
30	Characterization of cereal \hat{l}^2 -glucan extracts: Conformation and structural aspects. Food Hydrocolloids, 2018, 79, 218-227.	10.7	37
31	Application of asymmetric flow field-flow fractionation (AF4) and multiangle light scattering (MALS) for the evaluation of changes in the product molar mass during PVP-b-PAMPS synthesis. Analytical and Bioanalytical Chemistry, 2018, 410, 3757-3767.	3.7	10
32	Interaction between cereal \hat{i}^2 -glucan and proteins in solution and at interfaces. Colloids and Surfaces B: Biointerfaces, 2018, 162, 256-264.	5.0	30
33	The effect of inÂvitro gastrointestinal conditions on the structure and conformation of oat \hat{l}^2 -glucan. Food Hydrocolloids, 2018, 77, 659-668.	10.7	20
34	Proteins and antibodies in serum, plasma, and whole blood—size characterization using asymmetrical flow field-flow fractionation (AF4). Analytical and Bioanalytical Chemistry, 2018, 410, 4867-4873.	3.7	132
35	Interaction Between Phenolic Compounds and Lipase: The Influence of Solubility and Presence of Particles in the IC ₅₀ Value. Journal of Food Science, 2018, 83, 2071-2076.	3.1	26
36	Characterization of the molar mass distribution of macromolecules in beer for different mashing processes using asymmetric flow field-flow fractionation (AF4) coupled with multiple detectors. Analytical and Bioanalytical Chemistry, 2017, 409, 4551-4558.	3.7	14

#	Article	IF	CITATIONS
37	Co-elution effects can influence molar mass determination of large macromolecules with asymmetric flow field-flow fractionation coupled to multiangle light scattering. Journal of Chromatography A, 2017, 1506, 138-141.	3.7	12
38	Characterization of a water soluble, hyperbranched arabinogalactan from yacon (Smallanthus) Tj ETQq0 0 0 rg	BT /Qverloc	k 10 Tf 50 70
39	Analysis of β-glucan molar mass from barley malt and brewer's spent grain with asymmetric flow field-flow fractionation (AF4) and their association to proteins. Carbohydrate Polymers, 2017, 157, 541-549.	10.2	38
40	Characterization of cereal \hat{l}^2 -glucan extracts from oat and barley and quantification of proteinaceous matter. PLoS ONE, 2017, 12, e0172034.	2.5	39
41	The effect of baking and enzymatic treatment on the structural properties of wheat starch. Food Chemistry, 2016, 213, 768-774.	8.2	16
42	Development and evaluation of methods for starch dissolution using asymmetrical flow field-flow fractionation. Part II: Dissolution of amylose. Analytical and Bioanalytical Chemistry, 2016, 408, 1399-1412.	3.7	15
43	Study on aggregation behavior of low density lipoprotein in hen egg yolk plasma by asymmetrical flow field-flow fractionation coupled with multiple detectors. Food Chemistry, 2016, 192, 228-234.	8.2	18
44	Physicochemical properties of different thickeners used in infant foods and their relationship with mineral availability during in vitro digestion process. Food Research International, 2015, 78, 62-70.	6.2	3
45	Development and evaluation of methods for starch dissolution using asymmetrical flow field-flow fractionation. Part I: Dissolution of amylopectin. Analytical and Bioanalytical Chemistry, 2015, 407, 4315-4326.	3.7	31
46	From 1D Rods to 3D Networks: A Biohybrid Topological Diversity Investigated by Asymmetrical Flow Field-Flow Fractionation. Macromolecules, 2015, 48, 4607-4619.	4.8	34
47	Relating genes in the biosynthesis of the polyphenol composition of <scp>A</scp> ndean colored potato collection. Food Science and Nutrition, 2014, 2, 46-57.	3.4	4
48	From Molecules to Products: Some Aspects of Structure–Function Relationships in Cereal Starches. Cereal Chemistry, 2013, 90, 326-334.	2.2	16
49	Separation and characterization of food macromolecules using field-flow fractionation: A review. Food Hydrocolloids, 2013, 30, 1-11.	10.7	112
50	Enzymatic hydrolysis of <i>Canna indica</i> , <i>Manihot esculenta</i> and <i>Xanthosoma sagittifolium</i> native starches below the gelatinization temperature. Starch/Staerke, 2013, 65, 151-161.	2.1	17
51	Hydrodynamic radius determination with asymmetrical flow field-flow fractionation using decaying cross-flows. Part II. Experimental evaluation. Journal of Chromatography A, 2012, 1253, 127-133.	3.7	43
52	Hydrodynamic radius determination with asymmetrical flow field-flow fractionation using decaying cross-flows. Part I. A theoretical approach. Journal of Chromatography A, 2012, 1253, 120-126.	3.7	61
53	Asymmetrical flow field-flow fractionation enables the characterization of molecular and supramolecular properties of cereal l̂²-glucan dispersions. Carbohydrate Polymers, 2012, 87, 518-523.	10.2	35
54	Flow FFF – Basics and Key Applications. , 2012, , 1-21.		17

#	Article	IF	CITATION
55	Size, structure and scaling relationships in glycogen from various sources investigated with asymmetrical flow field-flow fractionation and 1H NMR. International Journal of Biological Macromolecules, 2011, 49, 458-465.	7.5	37
56	Competitive Adsorption of Proteins from Total Hen Egg Yolk during Emulsification. Journal of Agricultural and Food Chemistry, 2007, 55, 6746-6753.	5.2	23
57	Competitive Adsorption of a Polydisperse Polymer during Emulsification:Â Experiments and Modeling. Langmuir, 2007, 23, 2346-2351.	3.5	35
58	Emulsification and Adsorption Properties of Hydrophobically Modified Potato and Barley Starch. Journal of Agricultural and Food Chemistry, 2007, 55, 1469-1474.	5.2	76
59	Adsorption of hydrophobically modified anionic starch at oppositely charged oil/water interfaces. Journal of Colloid and Interface Science, 2007, 308, 508-513.	9.4	78
60	Competitive Adsorption of Water Soluble Plasma Proteins from Egg Yolk at the Oil/Water Interface. Journal of Agricultural and Food Chemistry, 2006, 54, 6881-6887.	5.2	31
61	Adsorption of Hydrophobically Modified Starch at Oil/Water Interfaces during Emulsification. Langmuir, 2006, 22, 8770-8776.	3.5	107
62	Mechanical Degradation and Changes in Conformation of Hydrophobically Modified Starch. Biomacromolecules, 2006, 7, 2671-2679.	5.4	87
63	MODELLING AND CORRELATING THE PERMEABILITY OF PULP AND PAPER. Drying Technology, 1997, 15, 1845-1855.	3.1	0
64	Effects of serial and parallel pore nonuniformities: Results from two models of the porous structure. Transport in Porous Media, 1996, 25, 335-350.	2.6	3
65	SIMULATION MODELS OF MULTI-CYLINDER PAPER DRYING. Drying Technology, 1993, 11, 1177-1203.	3.1	16