Antti Joonas Koivisto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5635173/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluating the Theoretical Background of STOFFENMANAGER® and the Advanced REACH Tool. Annals of Work Exposures and Health, 2022, 66, 520-536.	0.6	7
2	Theoretical Background of Occupational-Exposure Models—Report of an Expert Workshop of the ISES Europe Working Group "Exposure Models― International Journal of Environmental Research and Public Health, 2022, 19, 1234.	1.2	9
3	Particles Emission from an Industrial Spray Coating Process Using Nano-Materials. Nanomaterials, 2022, 12, 313.	1.9	6
4	Quantifying Emission Factors and Setting Conditions of Use According to ECHA Chapter R.14 for a Spray Process Designed for Nanocoatings—A Case Study. Nanomaterials, 2022, 12, 596.	1.9	7
5	Assessing Human Exposure to SVOCs in Materials, Products, and Articles: A Modular Mechanistic Framework. Environmental Science & Technology, 2021, 55, 25-43.	4.6	54
6	Digital Twins applied to the implementation of Safe-by-Design strategies in nano-processes for the reduction of airborne emission and occupational exposure to nano-forms. Journal of Physics: Conference Series, 2021, 1953, 012010.	0.3	3
7	Data Shepherding in Nanotechnology. The Exposure Field Campaign Template. Nanomaterials, 2021, 11, 1818.	1.9	9
8	Occupational exposure and markers of genetic damage, systemic inflammation and lung function: a Danish cross-sectional study among air force personnel. Scientific Reports, 2021, 11, 17998.	1.6	6
9	Occupational Exposure and Environmental Release: The Case Study of Pouring TiO2 and Filler Materials for Paint Production. International Journal of Environmental Research and Public Health, 2021, 18, 418.	1.2	12
10	Increased surface area of halloysite nanotubes due to surface modification predicts lung inflammation and acute phase response after pulmonary exposure in mice. Environmental Toxicology and Pharmacology, 2020, 73, 103266.	2.0	28
11	Toward Rigorous Materials Production: New Approach Methodologies Have Extensive Potential to Improve Current Safety Assessment Practices. Small, 2020, 16, e1904749.	5.2	43
12	Indoor Particle Concentrations, Size Distributions, and Exposures in Middle Eastern Microenvironments. Atmosphere, 2020, 11, 41.	1.0	15
13	Regional Inhaled Deposited Dose of Urban Aerosols in an Eastern Mediterranean City. Atmosphere, 2019, 10, 530.	1.0	16
14	Relative Differences in Concentration Levels during Sawing and Drilling of Car Bumpers Containing MWCNT and Organic Pigment. Annals of Work Exposures and Health, 2019, 63, 148-157.	0.6	1
15	SUNDS probabilistic human health risk assessment methodology and its application to organic pigment used in the automotive industry. NanoImpact, 2019, 13, 26-36.	2.4	18
16	Modeling of High Nanoparticle Exposure in an Indoor Industrial Scenario with a One-Box Model. International Journal of Environmental Research and Public Health, 2019, 16, 1695.	1.2	11
17	Indoor dispersion of airborne nano and fine particles: Main factors affecting spatial and temporal distribution in the frame of exposure modeling. Indoor Air, 2019, 29, 803-816.	2.0	6
18	Airport emission particles: exposure characterization and toxicity following intratracheal instillation in mice. Particle and Fibre Toxicology, 2019, 16, 23.	2.8	41

#	Article	IF	CITATIONS
19	Source specific exposure and risk assessment for indoor aerosols. Science of the Total Environment, 2019, 668, 13-24.	3.9	49
20	Testing the performance of one and two box models as tools for risk assessment of particle exposure during packing of inorganic fertilizer. Science of the Total Environment, 2019, 650, 2423-2436.	3.9	12
21	The Effect of Sampling Inlet Direction and Distance on Particle Source Measurements for Dispersion Modelling. Aerosol and Air Quality Research, 2019, 19, 1114-1125.	0.9	2
22	The general ventilation multipliers calculated by using a standard Near-Field/Far-Field model. Journal of Occupational and Environmental Hygiene, 2018, 15, D38-D43.	0.4	15
23	Particle release and control of worker exposure during laboratory-scale synthesis, handling and simulated spills of manufactured nanomaterials in fume hoods. Journal of Nanoparticle Research, 2018, 20, 48.	0.8	21
24	Dip coating of air purifier ceramic honeycombs with photocatalytic TiO2 nanoparticles: A case study for occupational exposure. Science of the Total Environment, 2018, 630, 1283-1291.	3.9	26
25	Particle emission rates during electrostatic spray deposition of TiO2 nanoparticle-based photoactive coating. Journal of Hazardous Materials, 2018, 341, 218-227.	6.5	16
26	Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano, 2018, 12, 10582-10620.	7.3	438
27	Comparison of Geometrical Layouts for a Multi-Box Aerosol Model from a Single-Chamber Dispersion Study. Environments - MDPI, 2018, 5, 52.	1.5	14
28	Occupational exposure during handling and loading of halloysite nanotubes – A case study of counting nanofibers. NanoImpact, 2018, 10, 153-160.	2.4	26
29	Quantitative human health risk assessment along the lifecycle of nano-scale copper-based wood preservatives. Nanotoxicology, 2018, 12, 747-765.	1.6	21
30	First order risk assessment for nanoparticle inhalation exposure during injection molding of polypropylene composites and production of tungsten-carbide-cobalt fine powder based upon pulmonary inflammation and surface area dose. NanoImpact, 2017, 6, 30-38.	2.4	10
31	Quantitative material releases from products and articles containing manufactured nanomaterials: Towards a release library. NanoImpact, 2017, 5, 119-132.	2.4	69
32	Probabilistic risk assessment of emerging materials: case study of titanium dioxide nanoparticles. Nanotoxicology, 2017, 11, 558-568.	1.6	18
33	Assessment of airborne bacteria and noroviruses in air emission from a new highly-advanced hospital wastewater treatment plant. Water Research, 2017, 112, 110-119.	5.3	88
34	Inhalation and Oropharyngeal Aspiration Exposure to Rod-Like Carbon Nanotubes Induce Similar Airway Inflammation and Biological Responses in Mouse Lungs. ACS Nano, 2017, 11, 291-303.	7.3	72
35	Workplace Measurements of Ultrafine Particles—A Literature Review. Annals of Work Exposures and Health, 2017, 61, 749-758	0.6	84
36	An Efficient Algorithm Scheme for Implementing the TEMOM for Resolving Aerosol Dynamics. Aerosol Science and Engineering, 2017, 1, 119-137.	1.1	5

Antti Joonas Koivisto

#	Article	IF	CITATIONS
37	Characterization of particle exposure in ferrochromium and stainless steel production. Journal of Occupational and Environmental Hygiene, 2016, 13, 558-568.	0.4	6
38	<i>In vitro</i> and <i>in vivo</i> genotoxic effects of straight versus tangled multi-walled carbon nanotubes. Nanotoxicology, 2016, 10, 794-806.	1.6	65
39	Can We Trust Real Time Measurements of Lung Deposited Surface Area Concentrations in Dust from Powder Nanomaterials?. Aerosol and Air Quality Research, 2016, 16, 1105-1117.	0.9	13
40	Characterization of Exposure to Carbon Nanotubes in an Industrial Setting. Annals of Occupational Hygiene, 2015, 59, 586-99.	1.9	16
41	Exposure to Airborne Particles and Volatile Organic Compounds from Polyurethane Molding, Spray Painting, Lacquering, and Cluing in a Workshop. International Journal of Environmental Research and Public Health, 2015, 12, 3756-3773.	1.2	17
42	Testing the near field/far field model performance for prediction of particulate matter emissions in a paint factory. Environmental Sciences: Processes and Impacts, 2015, 17, 62-73.	1.7	30
43	Worker Exposure and High Time-Resolution Analyses of Process-Related Submicrometre Particle Concentrations at Mixing Stations in Two Paint Factories. Annals of Occupational Hygiene, 2015, 59, 749-763.	1.9	33
44	Workplace performance of a loose-fitting powered air purifying respirator during nanoparticle synthesis. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	19
45	Exposure Assessment of Particulate Matter from Abrasive Treatment of Carbon and Glass Fibre-Reinforced Epoxy-Composites - Two Case Studies. Aerosol and Air Quality Research, 2015, 15, 1906-1916.	0.9	18
46	Inhalation of rod-like carbon nanotubes causes unconventional allergic airway inflammation. Particle and Fibre Toxicology, 2014, 11, 48.	2.8	83
47	A New Clean Air Delivery Rate Test Applied to Five Portable Indoor Air Cleaners. Aerosol Science and Technology, 2014, 48, 409-417.	1.5	32
48	Range-Finding Risk Assessment of Inhalation Exposure to Nanodiamonds in a Laboratory Environment. International Journal of Environmental Research and Public Health, 2014, 11, 5382-5402.	1.2	26
49	Modeling regional deposited dose of submicron aerosol particles. Science of the Total Environment, 2013, 458-460, 140-149.	3.9	61
50	Size Dependence of the Ratio of Aerosol Coagulation to Deposition Rates for Indoor Aerosols. Aerosol Science and Technology, 2013, 47, 427-434.	1.5	34
51	Industrial worker exposure to airborne particles during the packing of pigment and nanoscale titanium dioxide. Inhalation Toxicology, 2012, 24, 839-849.	0.8	63
52	Concept To Estimate Regional Inhalation Dose of Industrially Synthesized Nanoparticles. ACS Nano, 2012, 6, 1195-1203.	7.3	22
53	Genotoxicity of inhaled nanosized TiO2 in mice. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2012, 745, 58-64.	0.9	85
54	Size resolved particle emission rates from an evolving indoor aerosol system. Journal of Aerosol Science, 2012, 47, 58-69.	1.8	31

ANTTI JOONAS KOIVISTO

#	Article	IF	CITATIONS
55	Comparison of nanoparticle measurement instruments for occupational health applications. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	66
56	Aerosol characterization and lung deposition of synthesized TiO2 nanoparticles for murine inhalation studies. Journal of Nanoparticle Research, 2011, 13, 2949-2961.	0.8	9
57	Impact of particle emissions of new laser printers on modeled office room. Atmospheric Environment, 2010, 44, 2140-2146.	1.9	61
58	Nanotechnologies, engineered nanomaterials and occupational health and safety – A review. Safety Science, 2010, 48, 957-963.	2.6	147
59	Inhalation exposure to nanosized and fine TiO2 particles inhibits features of allergic asthma in a murine model. Particle and Fibre Toxicology, 2010, 7, 35.	2.8	70
60	Airway Exposure to Silica-Coated TiO2 Nanoparticles Induces Pulmonary Neutrophilia in Mice. Toxicological Sciences, 2010, 113, 422-433.	1.4	140
61	Facing the key workplace challenge: Assessing and preventing exposure to nanoparticles at source. Inhalation Toxicology, 2009, 21, 17-24.	0.8	25
62	Assessment of exposure determinants and exposure levels by using stationary concentration measurements and a probabilistic near-field/far-field exposure model. Open Research Europe, 0, 1, 72.	2.0	8
63	Nanosized titanium dioxide particle emission potential from a commercial indoor air purifier photocatalytic surface: A case study. Open Research Europe, 0, 2, 84.	2.0	1