Gabriel Hattori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5635075/publications.pdf Version: 2024-02-01

CARDIEL HATTOR

#	Article	IF	CITATIONS
1	Predicting shear failure in reinforced concrete members using a three-dimensional peridynamic framework. Computers and Structures, 2022, 258, 106682.	4.4	12
2	An examination of the size effect in quasi-brittle materials using a bond-based peridynamic model. Engineering Structures, 2022, 262, 114207.	5.3	9
3	A Review on the Developments of Peridynamics for Reinforced Concrete Structures. Archives of Computational Methods in Engineering, 2021, 28, 4655-4686.	10.2	12
4	Hybrid nearly singular integration for three-dimensional isogeometric boundary element analysis of coatings and other thin structures. Computer Methods in Applied Mechanics and Engineering, 2020, 367, 113099.	6.6	18
5	A fast and non-degenerate scheme for the evaluation of the 3D fundamental solution and its derivatives for fully anisotropic magneto-electro-elastic materials. Engineering Analysis With Boundary Elements, 2019, 105, 94-103.	3.7	1
6	Discontinuous isogeometric boundary element (IGABEM) formulations in 3D automotive acoustics. Engineering Analysis With Boundary Elements, 2019, 105, 303-311.	3.7	21
7	Hybrid nearly singular integration for isogeometric boundary element analysis of coatings and other thin 2D structures. Computer Methods in Applied Mechanics and Engineering, 2019, 346, 642-673.	6.6	26
8	A non-ordinary state-based peridynamics framework for anisotropic materials. Computer Methods in Applied Mechanics and Engineering, 2018, 339, 416-442.	6.6	47
9	Numerical Simulation of Fracking in Shale Rocks: Current State and Future Approaches. Archives of Computational Methods in Engineering, 2017, 24, 281-317.	10.2	35
10	An extended boundary element method formulation for the direct calculation of the stress intensity factors in fully anisotropic materials. International Journal for Numerical Methods in Engineering, 2017, 109, 965-981.	2.8	18
11	Contact stiffness estimation in ANSYS using simplified models and artificial neural networks. Finite Elements in Analysis and Design, 2015, 97, 43-53.	3.2	27
12	Damage identification in multifield materials using neural networks. Inverse Problems in Science and Engineering, 2013, 21, 929-944.	1.2	6
13	Crack identification in magnetoelectroelastic materials using neural networks, self-organizing algorithms and boundary element method. Computers and Structures, 2013, 125, 187-199.	4.4	9
14	New anisotropic crack-tip enrichment functions for the extended finite element method. Computational Mechanics, 2012, 50, 591-601.	4.0	39
15	Influence of the Main Contact Parameters in Finite Element Analysis of Elastic Bodies in Contact. Key Engineering Materials, 0, 681, 214-227.	0.4	1