
Ana Carla Kawazoe Sato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5635003/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stability and viability of synbiotic microgels incorporated into liquid, Greek and frozen yogurts. Journal of Food Science, 2022, 87, 1796-1809.	3.1	2
2	Scaling up the Two-Stage Countercurrent Extraction of Oil and Protein from Green Coffee Beans: Impact of Proteolysis on Extractability, Protein Functionality, and Oil Recovery. Food and Bioprocess Technology, 2022, 15, 1794-1809.	4.7	2
3	Modulating porosity and mechanical properties of pectin hydrogels by starch addition. Journal of Food Science and Technology, 2021, 58, 302-310.	2.8	10
4	Protection and targeted delivery of β-carotene by starch-alginate-gelatin emulsion-filled hydrogels. Journal of Food Engineering, 2021, 290, 110205.	5.2	43
5	Functional characterization of commercial plant proteins and their application on stabilization of emulsions. Journal of Food Engineering, 2021, 292, 110277.	5.2	28
6	Xylo-oligosaccharide microparticles with synbiotic potential obtained from enzymatic hydrolysis of sugarcane straw. Food Research International, 2021, 140, 109827.	6.2	10
7	Biopolymer interactions on emulsion-filled hydrogels: chemical, mechanical properties and microstructure. Food Research International, 2021, 141, 110059.	6.2	8
8	Polysaccharide-Peptides-Based Microgels: Characterization, In Vitro Digestibility, and Rheological Behavior of their Suspensions. Food Biophysics, 2021, 16, 440-450.	3.0	3
9	From solvent extraction to the concurrent extraction of lipids and proteins from green coffee: An eco-friendly approach to improve process feasibility. Food and Bioproducts Processing, 2021, 129, 144-156.	3.6	13
10	Evaluating the addition of xylooligosaccharides into alginate-gelatin hydrogels. Food Research International, 2021, 147, 110516.	6.2	11
11	Emulsion-filled hydrogels for food applications: influence of pH on emulsion stability and a coating on microgel protection. Food and Function, 2020, 11, 8331-8341.	4.6	8
12	Microbeads of Sodium Caseinate and κ-Carrageenan as a β-Carotene Carrier in Aqueous Systems. Food and Bioprocess Technology, 2020, 13, 661-669.	4.7	12
13	Alginate and corn starch mixed gels: Effect of gelatinization and amylose content on the properties and in vitro digestibility. Food Research International, 2020, 132, 109069.	6.2	35
14	Structure of gellan gum–hydrolyzed collagen particles: Effect of starch addition and coating layer. Food Research International, 2019, 121, 394-403.	6.2	18
15	Sonication technique to produce emulsions: The impact of ultrasonic power and gelatin concentration. Ultrasonics Sonochemistry, 2019, 52, 286-293.	8.2	34
16	Symbiotic microencapsulation to enhance Lactobacillus acidophilus survival. LWT - Food Science and Technology, 2018, 89, 503-509.	5.2	63
17	Gelled Double-Layered Emulsions for Protection of Flaxseed Oil. Food Biophysics, 2018, 13, 316-323.	3.0	6
18	Utilization of Plant Dietary Fibers to Reinforce Low-Calorie Dairy Dessert Structure. Food and Bioprocess Technology, 2017, 10, 914-925.	4.7	35

#	Article	IF	CITATIONS
19	Biopolymer gels containing fructooligosaccharides. Food Research International, 2017, 101, 88-95.	6.2	14
20	Density and rheology of acid suspensions of peanut waste in different conditions: An engineering basis for bioethanol production. Powder Technology, 2016, 294, 168-176.	4.2	15
21	Cross-linking proteins by laccase: Effects on the droplet size and rheology of emulsions stabilized by sodium caseinate. Food Research International, 2015, 75, 244-251.	6.2	42
22	Structures design for protection and vehiculation of bioactives. Current Opinion in Food Science, 2015, 5, 67-75.	8.0	14
23	Preparation, characterization and in vitro digestibility of gellan and chitosan–gellan microgels. Carbohydrate Polymers, 2015, 117, 54-62.	10.2	66
24	Development of gelled emulsions with improved oxidative and pH stability. Food Hydrocolloids, 2014, 34, 184-192.	10.7	72
25	Influence of Dispersing Media and Particle Characteristics on Rheological Behavior of Noncolloidal Suspensions. Journal of Dispersion Science and Technology, 2012, 33, 437-446.	2.4	11
26	Effect of process variables on the osmotic dehydration of star-fruit slices. Food Science and Technology, 2012, 32, 357-365.	1.7	13
27	Emulsions stabilized by heat-treated collagen fibers. Food Hydrocolloids, 2012, 26, 73-81.	10.7	30
28	Emulsifying properties of collagen fibers: Effect of pH, protein concentration and homogenization pressure. Food Hydrocolloids, 2011, 25, 604-612.	10.7	43
29	κ-Carrageenan–sodium caseinate microgel production by atomization: Critical analysis of the experimental procedure. Journal of Food Engineering, 2011, 104, 123-133.	5.2	28
30	The effect of homogenisation on the stability of pineapple pulp. International Journal of Food Science and Technology, 2010, 45, 2127-2133.	2.7	89
31	Effect of particle size on rheological properties of jaboticaba pulp. Journal of Food Engineering, 2009, 91, 566-570.	5.2	88
32	Rheology of Mixed Pectin Solutions. Food Biophysics, 2008, 3, 100-109.	3.0	42
33	Influência da temperatura no comportamento reológico da polpa de jabuticaba. Food Science and Technology, 2007, 27, 890-896.	1.7	36
34	The effect of addition of calcium and processing temperature on the quality of guava in syrup. International Journal of Food Science and Technology, 2006, 41, 417-424.	2.7	14