
Jianshuang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5634982/publications.pdf Version: 2024-02-01

ΙΙΔΝSΗΠΑΝC Μ/Π

#	Article	IF	CITATIONS
1	The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agricultural and Forest Meteorology, 2014, 189-190, 11-18.	4.8	486
2	Increasing sensitivity of alpine grasslands to climate variability along an elevational gradient on the Qinghai-Tibet Plateau. Science of the Total Environment, 2019, 678, 21-29.	8.0	149
3	Change in dominance determines herbivore effects on plant biodiversity. Nature Ecology and Evolution, 2018, 2, 1925-1932.	7.8	140
4	Human footprint in Tibet: Assessing the spatial layout and effectiveness of nature reserves. Science of the Total Environment, 2018, 621, 18-29.	8.0	104
5	Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau. Environmental Earth Sciences, 2011, 64, 1911-1919.	2.7	99
6	Estimating air temperature of an alpine meadow on the Northern Tibetan Plateau using MODIS land surface temperature. Acta Ecologica Sinica, 2011, 31, 8-13.	1.9	91
7	Effects of grazing exclusion on plant productivity and soil carbon, nitrogen storage in alpine meadows in northern Tibet, China. Chinese Geographical Science, 2014, 24, 488-498.	3.0	72
8	Spatiotemporal Patterns of Vegetation Greenness Change and Associated Climatic and Anthropogenic Drivers on the Tibetan Plateau during 2000–2015. Remote Sensing, 2018, 10, 1525.	4.0	67
9	Grazing-Exclusion Effects on Aboveground Biomass and Water-Use Efficiency of Alpine Grasslands on the Northern Tibetan Plateau. Rangeland Ecology and Management, 2013, 66, 454-461.	2.3	65
10	Current challenges in distinguishing climatic and anthropogenic contributions to alpine grassland variation on the Tibetan Plateau. Ecology and Evolution, 2018, 8, 5949-5963.	1.9	62
11	Effects of Grazing on Above- vs. Below-Ground Biomass Allocation of Alpine Grasslands on the Northern Tibetan Plateau. PLoS ONE, 2015, 10, e0135173.	2.5	60
12	Precipitation and species composition primarily determine the diversity–productivity relationship of alpine grasslands on the Northern Tibetan Plateau. Alpine Botany, 2014, 124, 13-25.	2.4	59
13	Foliar nutrient resorption patterns of four functional plants along a precipitation gradient on the Tibetan Changtang Plateau. Ecology and Evolution, 2017, 7, 7201-7212.	1.9	58
14	Disentangling climatic and anthropogenic contributions to nonlinear dynamics of alpine grassland productivity on the Qinghai-Tibetan Plateau. Journal of Environmental Management, 2021, 281, 111875.	7.8	44
15	Grazing exclusion by fencing non-linearly restored the degraded alpine grasslands on the Tibetan Plateau. Scientific Reports, 2017, 7, 15202.	3.3	42
16	Dynamic forage-livestock balance analysis in alpine grasslands on the Northern Tibetan Plateau. Journal of Environmental Management, 2019, 238, 352-359.	7.8	42
17	Effects of Grazing Exclusion on Plant Functional Group Diversity of Alpine Grasslands Along a Precipitation Gradient on the Northern Tibetan Plateau. Arctic, Antarctic, and Alpine Research, 2014, 46, 419-429.	1.1	40
18	Species Richness and Diversity of Alpine Grasslands on the Northern Tibetan Plateau: Effects of Grazing Exclusion and Growing Season Precipitation Journal of Resources and Ecology, 2012, 3, 236.	0.4	40

JIANSHUANG WU

#	Article	IF	CITATIONS
19	Plant functional trait diversity regulates the nonlinear response of productivity to regional climate change in Tibetan alpine grasslands. Scientific Reports, 2016, 6, 35649.	3.3	36
20	Grazing Exclusion to Recover Degraded Alpine Pastures Needs Scientific Assessments across the Northern Tibetan Plateau. Sustainability, 2016, 8, 1162.	3.2	35
21	Declining human activity intensity on alpine grasslands of the Tibetan Plateau. Journal of Environmental Management, 2021, 296, 113198.	7.8	35
22	Effects of livestock exclusion and climate change on aboveground biomass accumulation in alpine pastures across the Northern Tibetan Plateau. Science Bulletin, 2014, 59, 4332-4340.	1.7	34
23	Impacts of grazing exclusion on productivity partitioning along regional plant diversity and climatic gradients in Tibetan alpine grasslands. Journal of Environmental Management, 2019, 231, 635-645.	7.8	34
24	Benchmarking plant diversity of Palaearctic grasslands and other open habitats. Journal of Vegetation Science, 2021, 32, e13050.	2.2	34
25	Biomass allocation patterns of alpine grassland species and functional groups along a precipitation gradient on the Northern Tibetan Plateau. Journal of Mountain Science, 2013, 10, 1097-1108.	2.0	33
26	Temporal Variability of Precipitation and Biomass of Alpine Grasslands on the Northern Tibetan Plateau. Remote Sensing, 2019, 11, 360.	4.0	33
27	Climate Variability Rather Than Livestock Grazing Dominates Changes in Alpine Grassland Productivity Across Tibet. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	28
28	Warming homogenizes apparent temperature sensitivity of ecosystem respiration. Science Advances, 2021, 7, .	10.3	28
29	Plant and soil's δ15N are regulated by climate, soil nutrients, and species diversity in alpine grasslands on the northern Tibetan Plateau. Agriculture, Ecosystems and Environment, 2019, 281, 111-123.	5.3	27
30	Distribution and Potential Health Risks of Arsenic, Selenium, and Fluorine in Natural Waters in Tibet, China. Water (Switzerland), 2016, 8, 568.	2.7	26
31	Patterns and dynamics of the human appropriation of net primary production and its components in Tibet. Journal of Environmental Management, 2018, 210, 280-289.	7.8	24
32	Causes and Restoration of Degraded Alpine Grassland in Northern Tibet. Journal of Resources and Ecology, 2013, 4, 43-49.	0.4	23
33	Vegetation Expansion on the Tibetan Plateau and Its Relationship with Climate Change. Remote Sensing, 2020, 12, 4150.	4.0	23
34	Identifying the Relative Contributions of Climate and Grazing to Both Direction and Magnitude of Alpine Grassland Productivity Dynamics from 1993 to 2011 on the Northern Tibetan Plateau. Remote Sensing, 2017, 9, 136.	4.0	22
35	Modelling aboveground biomass using MODIS FPAR/LAI data in alpine grasslands of the Northern Tibetan Plateau. Remote Sensing Letters, 2018, 9, 150-159.	1.4	22
36	Changes in plant species richness distribution in Tibetan alpine grasslands under different precipitation scenarios. Global Ecology and Conservation, 2020, 21, e00848.	2.1	21

JIANSHUANG WU

#	Article	IF	CITATIONS
37	Sensitivity of terrestrial carbon cycle to changes in precipitation regimes. Ecological Indicators, 2020, 113, 106223.	6.3	21
38	Calibration of MODIS-based gross primary production over an alpine meadow on the Tibetan Plateau. Canadian Journal of Remote Sensing, 2012, 38, 157-168.	2.4	20
39	Hydrochemical characteristics and element contents of natural waters in Tibet, China. Journal of Chinese Geography, 2015, 25, 669-686.	3.9	20
40	Dimensionality of grassland stability shifts along with altitudes on the Tibetan Plateau. Agricultural and Forest Meteorology, 2020, 291, 108080.	4.8	20
41	Identification of impact factors for differentiated patterns of NDVI change in the headwater source region of Brahmaputra and Indus, Southwestern Tibetan Plateau. Ecological Indicators, 2021, 125, 107604.	6.3	20
42	Phenological changes offset the warming effects on biomass production in an alpine meadow on the Qinghai–Tibetan Plateau. Journal of Ecology, 2021, 109, 1014-1025.	4.0	19
43	Assessment of the vulnerability of alpine grasslands on the Qinghai-Tibetan Plateau. PeerJ, 2020, 8, e8513.	2.0	18
44	Validation of MODIS collection 6 FPAR/LAI in the alpine grassland of the Northern Tibetan Plateau. Remote Sensing Letters, 2017, 8, 831-838.	1.4	16
45	Estimating soil degradation in montane grasslands of North-eastern Italian Alps (Italy). Heliyon, 2019, 5, e01825.	3.2	16
46	Spatial and climatic patterns of the relative abundance of poisonous vs. non-poisonous plants across the Northern Tibetan Plateau. Environmental Monitoring and Assessment, 2015, 187, 491.	2.7	13
47	Drought reduces the effectiveness of ecological projects: Perspectives from the inter-annual variability of vegetation index. Ecological Indicators, 2021, 130, 108158.	6.3	10
48	Satellite-Based Estimation of Gross Primary Production in an Alpine Swamp Meadow on the Tibetan Plateau: A Multi-Model Comparison. Journal of Resources and Ecology, 2017, 8, 57-66.	0.4	9
49	Scale dependence of species–area relationships is widespread but generally weak in Palaearctic grasslands. Journal of Vegetation Science, 2021, 32, e13044.	2.2	8
50	Modeling gross primary productivity of alpine meadow in the northern Tibet Plateau by using MODIS images and climate data. Acta Ecologica Sinica, 2010, 30, 264-269.	1.9	7
51	Uncovering the role of a positive selection site of wax ester synthase/diacylglycerol acyltransferase in two closely related Stipa species in wax ester synthesis under drought stress. Journal of Experimental Botany, 2020, 71, 4159-4170.	4.8	7
52	Spatial–Temporal Variation of ANPP and Rain-Use Efficiency Along a Precipitation Gradient on Changtang Plateau, Tibet. Remote Sensing, 2019, 11, 325.	4.0	6
53	Divergent Climate Sensitivities of the Alpine Grasslands to Early Growing Season Precipitation on the Tibetan Plateau. Remote Sensing, 2022, 14, 2484.	4.0	6
54	Community assembly and functional leaf traits mediate precipitation use efficiency of alpine grasslands along environmental gradients on the Tibetan Plateau. PeerJ, 2016, 4, e2680.	2.0	5

JIANSHUANG WU

#	Article	IF	CITATIONS
55	Comparison of Methods for Evaluating the Forage-Livestock Balance of Alpine Grasslands on the Northern Tibetan Plateau. Journal of Resources and Ecology, 2020, 11, 272.	0.4	5
56	Patterns and drivers of the degradability of dissolved organic matter in dryland soils on the Tibetan Plateau. Journal of Applied Ecology, 2022, 59, 884-894.	4.0	5
57	Richness, not evenness, varies across water availability gradients in grassy biomes on five continents. Oecologia, 2022, 199, 649-659.	2.0	5
58	Species-area relationship within and across functional groups at alpine grasslands on the northern Tibetan Plateau, China. Journal of Mountain Science, 2016, 13, 265-275.	2.0	4
59	Soil Moisture and Soluble Salt Content Dominate Changes in Foliar δ13C and δ15N of Desert Communities in the Qaidam Basin, Qinghai-Tibetan Plateau. Frontiers in Plant Science, 2021, 12, 675817.	3.6	4
60	Quantitatively assessing the effects of climate change and human activities on ecosystem degradation and restoration in southwest China. Rangeland Journal, 2019, 41, 335.	0.9	3
61	Impact of Drought Stress on Net CO2Exchange Above an Alpine Grassland Ecosystem in the Central Tibetan Plateau. Journal of Resources and Ecology, 2013, 4, 327-336.	0.4	1
62	Geographical and Botanical Variation in Concentrations of Molybdenum in Natural Pasture Plants and Surface Water and Yak Molybdenum Ingestion in North Tibet, China. Journal of Resources and Ecology, 2018, 9, 545-553.	0.4	1
63	Impact of Cloud on Net Ecosystem CO2Exchange of Alpine Meadow in Tibetan Plateau. Chinese Journal of Population Resources and Environment, 2010, 8, 69-75.	1.5	0
64	Dynamics of soil organic carbon in alpine meadow of Tibetan Plateau with CENTURY model. , 2011, , .		0