Iliana Medina-RamÃ-rez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5634870/publications.pdf

Version: 2024-02-01

44 papers 805 citations

471509 17 h-index 28 g-index

47 all docs

47 docs citations

47 times ranked

1136 citing authors

#	Article	IF	CITATIONS
1	Green synthesis and characterization of polymer-stabilized silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 2009, 73, 185-191.	5.0	142
2	Nanocharacterization and bactericidal performance of silver modified titania photocatalyst. Colloids and Surfaces B: Biointerfaces, 2010, 77, 82-89.	5.0	86
3	Comparison of two synthesis methods on the preparation of Fe, N-Co-doped TiO2 materials for degradation of pharmaceutical compounds under visible light. Ceramics International, 2017, 43, 5068-5079.	4.8	63
4	Evaluation of the Photocatalytic Activity of Copper Doped TiO2 nanoparticles for the Purification and/or Disinfection of Industrial Effluents. Catalysis Today, 2020, 341, 37-48.	4.4	60
5	Synthesis, characterization, photocatalytic evaluation, and toxicity studies of TiO2–Fe3+ nanocatalyst. Journal of Materials Science, 2014, 49, 5309-5323.	3.7	42
6	Spectroscopic study of honey from Apis mellifera from different regions in Mexico. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 178, 212-217.	3.9	34
7	An implicit four-step computational method in the study on the effects of damping in a modified <mml:math <br="" altimg="si45.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mrow><mml:mi>α</mml:mi></mml:mrow></mml:math> -Fermiâ€"Pastaâ€"Ulam medium. Communications in Nonlinear Science and Numerical Simulation. 2009. 14. 3200-3212.	3.3	32
8	Development of a sustainable photocatalytic process for air purification Chemosphere, 2020, 257, 127236.	8.2	29
9	Numerical treatment of the spherically symmetric solutions of a generalized Fisher–Kolmogorov–Petrovsky–Piscounov equation. Journal of Computational and Applied Mathematics, 2009, 231, 851-868.	2.0	28
10	AN EFFICIENT RECURSIVE ALGORITHM IN THE COMPUTATIONAL SIMULATION OF THE BOUNDED GROWTH OF BIOLOGICAL FILMS. International Journal of Computational Methods, 2012, 09, 1250050.	1.3	26
11	Evaluation of the Antimicrobial Activity of Nanostructured Materials of Titanium Dioxide Doped with Silver and/or Copper and Their Effects on <i>Arabidopsis thaliana</i> . International Journal of Photoenergy, 2016, 2016, 1-14.	2.5	26
12	Self-cleaning of SiO2-TiO2 coating: Effect of sonochemical synthetic parameters on the morphological, mechanical, and photocatalytic properties of the films. Ultrasonics Sonochemistry, 2021, 73, 105483.	8.2	24
13	Facile design and nanostructural evaluation of silver-modified titania used as disinfectant. Dalton Transactions, 2011, 40, 1047-1054.	3.3	21
14	Nanostructure characterization of polymer-stabilized gold nanoparticles and nanofilms derived from green synthesis. Journal of Materials Science, 2009, 44, 6325-6332.	3.7	19
15	Synthesis, characterization, toxicological and antibacterial activity evaluation of Cu@ZnO nanocomposites. Ceramics International, 2019, 45, 17476-17488.	4.8	18
16	Dicoordinate Copper(I) Silanechalcogenolates. Inorganic Chemistry, 2006, 45, 8844-8846.	4.0	17
17	High removal of chemical and biochemical oxygen demand from tequila vinasses by using physicochemical and biological methods. Environmental Technology (United Kingdom), 2014, 35, 1773-1784.	2.2	17
18	Evaluation of the biocompatibility and growth inhibition of bacterial biofilms by ZnO, Fe3O4 and ZnO@Fe3O4 photocatalytic magnetic materials. Ceramics International, 2020, 46, 8979-8994.	4.8	11

#	Article	IF	CITATIONS
19	Colloidal Synthesis and Nanocharacterization of Engineered Noble Metal Nanoparticles. International Journal of Green Nanotechnology, 2011, 3, 140-151.	0.3	10
20	Tetra- \hat{l} /43-iodo-tetrakis[(tri-tert-butylphosphine)copper(I)]. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m1550-m1552.	0.2	9
21	An efficient nonlinear finite-difference approach in the computational modeling of the dynamics of a nonlinear diffusion-reaction equation in microbial ecology. Computational Biology and Chemistry, 2013, 47, 24-30.	2.3	9
22	NONLINEAR SUPRATRANSMISSION AND NONLINEAR BISTABILITY IN A FORCED LINEAR ARRAY OF ANHARMONIC OSCILLATORS: A COMPUTATIONAL STUDY. International Journal of Modern Physics C, 2009, 20, 1911-1923.	1.7	7
23	On a fully discrete finite-difference approximation of a nonlinear diffusion–reaction model in microbial ecology. International Journal of Computer Mathematics, 2013, 90, 1915-1937.	1.8	7
24	Development of Nano-Antifungal Therapy for Systemic and Endemic Mycoses. Journal of Fungi (Basel,) Tj ETQq0 (0	Overlock 10 T
25	Inflammatory response in human alveolar epithelial cells after TiO2 NPs or ZnO NPs exposure: Inhibition of surfactant protein A expression as an indicator for loss of lung function. Environmental Toxicology and Pharmacology, 2021, 86, 103654.	4.0	6
26	Hydrophobic agents and pH modification as comparative chemical effect on the hydrophobic and photocatalytic properties in SiO2-TiO2 coating. Applied Surface Science, 2022, 593, 153375.	6.1	6
27	The flavonoid quercetin protects and prevents against potassium dichromate–induced systemic peroxidation of lipids and diminution in renal clearance of para-aminohippuric acid and inulin in the rat. Drug and Chemical Toxicology, 2009, 32, 88-91.	2.3	5
28	Development and Assessment of Nano-Technologies for Cancer Treatment: Cytotoxicity and Hyperthermia Laboratory Studies. Cancer Investigation, 2020, 38, 61-84.	1.3	5
29	Enhanced photocatalytic and antifungal activity of ZnO–Cu2+and Ag@ZnO–Cu2+ materials. Ceramics International, 2022, 48, 12660-12674.	4.8	5
30	Tetrakis(ν-triisopropylsilanethiolato)-1:2κ ⁴ <i>SS</i> ;2:3κ ⁴ <i>S</i> -land the sup of the s	ois(triisopr	ogylsilanethi
31	REMOCIÓN DE COLORANTES AZO CON ALGINATO: RELACIÓN ENTRE ESTRUCTURA DE COLORANTE Y EFICIENCIA DE REMOCIÓN. Revista Internacional De Contaminacion Ambiental, 2019, 35, 223-236.	0.4	4
32	A compact exponential method for the efficient numerical simulation of the dewetting process of viscous thin films. Journal of Mathematical Chemistry, 2017, 55, 153-174.	1.5	3
33	Acetylcholine Upregulates Entamoeba histolytica Virulence Factors, Enhancing Parasite Pathogenicity in Experimental Liver Amebiasis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 586354.	3.9	3
34	Monoclinic form of 1,2,4,5-tetracyclohexylbenzene. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o375-o375.	0.2	3
35	ON THE GENERATION OF LOCALIZED NONLINEAR MODES IN A LINEAR ARRAY OF ANHARMONIC OSCILLATORS. International Journal of Modern Physics C, 2009, 20, 1187-1198.	1.7	2
36	Green Synthesis of Platinum-encapsulated Nickel Nanocatalyst and Its Microstructure Evaluation. Materials Research Society Symposia Proceedings, 2009, 1213, 101201.	0.1	2

#	Article	IF	CITATIONS
37	An efficient nonstandard computer method to solve a compartmental epidemiological model for COVID-19 with vaccination and population migration. Computer Methods and Programs in Biomedicine, 2022, 221, 106920.	4.7	2
38	Bis(triphenylsilyl)selenide. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o2687-o2688.	0.2	1
39	Silylated gallium and indium chalcogenide ring systems as potential precursors to ME (E=O, S) materials. Open Chemistry, 2013, 11, 1225-1238.	1.9	1
40	Evaluation of the environmental impact of magnetic nanostructured materials at different trophic levels. Nanotoxicology, 2021, 15, 257-275.	3.0	1
41	Zimm-Bragg Model Applied to Sorption of Dyes by Biopolymers: Alginic Acid and Xanthan. , 0, , .		1
42	Potassium dichromate–induced changes on urinary-specific activities of gamma-glutamyl transpeptidase and alanine aminopeptidase enzymes. Drug and Chemical Toxicology, 2009, 32, 21-25.	2.3	0
43	Removal of Azo dyes with Xanthan. Journal of the Mexican Chemical Society, 2019, 63, .	0.6	O
44	Application of the Zimm-Bragg Model to the Removal of Azo Dyes with Pectin. Adsorption Science and Technology, 2021, 2021, 1-22.	3.2	0