
## Nimai Mishra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5634678/publications.pdf Version: 2024-02-01



Nimai Mishda

| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | High-Quality CsPbX <sub>3</sub> (X = Cl, Br, or I) Perovskite Nanocrystals Using Ascorbic Acid<br>Post-Treatment: Implications for Light-Emitting Applications. ACS Applied Nano Materials, 2022, 5,<br>5972-5982.                                           | 5.0  | 24        |
| 2  | Study of Shell Thickness-Dependent Charge Transfer Dynamics in Green-Emitting Core/Shell Giant<br>Quantum Dots. Inorganic Chemistry, 2022, 61, 1059-1066.                                                                                                    | 4.0  | 3         |
| 3  | Year-Long Stability and Near-Unity Photoluminescence Quantum Yield of CsPbBr <sub>3</sub><br>Perovskite Nanocrystals by Benzoic Acid Post-treatment. Journal of Physical Chemistry C, 2022, 126,<br>9502-9508.                                               | 3.1  | 39        |
| 4  | Post-synthesis Treatment with Lead Bromide for Obtaining Near-Unity Photoluminescence Quantum<br>Yield and Ultra-stable Amine-Free CsPbBr <sub>3</sub> Perovskite Nanocrystals. Journal of Physical<br>Chemistry C, 2022, 126, 10742-10751.                  | 3.1  | 16        |
| 5  | Bromopropane as a novel bromine precursor for the completely amine free colloidal synthesis of<br>ultrastable and highly luminescent green-emitting cesium lead bromide (CsPbBr <sub>3</sub> )<br>perovskite nanocrystals. Nanoscale, 2021, 13, 13142-13151. | 5.6  | 27        |
| 6  | Surface modification for improving the photoredox activity of CsPbBr <sub>3</sub> nanocrystals.<br>Nanoscale Advances, 2021, 3, 2547-2553.                                                                                                                   | 4.6  | 30        |
| 7  | Enhancement of photoluminescence and the stability of CsPbX <sub>3</sub> (X = Cl, Br, and I) perovskite nanocrystals with phthalimide passivation. Nanoscale, 2021, 13, 14442-14449.                                                                         | 5.6  | 34        |
| 8  | Amineâ€Free Synthesis of Colloidal Cesium Lead Halide Perovskite Nanocrystals. ChemNanoMat, 2021, 7,<br>342-353.                                                                                                                                             | 2.8  | 23        |
| 9  | p-i-n Structured Semitransparent Perovskite Solar Cells with Solution-Processed Electron Transport<br>Layer. Journal of Electronic Materials, 2021, 50, 5732-5739.                                                                                           | 2.2  | 7         |
| 10 | Cesium Lead Bromide Perovskite Nanocrystals as a Simple and Portable Spectrochemical Probe for<br>Rapid Detection of Chlorides. ChemistrySelect, 2021, 6, 8171-8176.                                                                                         | 1.5  | 12        |
| 11 | Shell thickness dependent photostability studies of green-emitting "Giant―quantum dots. Nanoscale<br>Advances, 2021, 3, 6984-6991.                                                                                                                           | 4.6  | 8         |
| 12 | Surface-State-Mediated Interfacial Hole Transfer Dynamics between CsPbBr <sub>3</sub> Perovskite<br>Nanocrystals and Phenothiazine Redox Couple. Journal of Physical Chemistry C, 2021, 125, 22133-22141.                                                    | 3.1  | 26        |
| 13 | Surface Passivation Strategies for Improving Photoluminescence and Stability of Cesium Lead Halide<br>Perovskite Nanocrystals. ChemNanoMat, 2020, 6, 1730-1742.                                                                                              | 2.8  | 44        |
| 14 | Completely Amineâ€Free Openâ€Atmospheric Synthesis of Highâ€Quality Cesium Lead Bromide<br>(CsPbBr <sub>3</sub> ) Perovskite Nanocrystals. Chemistry - A European Journal, 2020, 26, 17195-17202.                                                            | 3.3  | 26        |
| 15 | Fast, tunable and reversible anion-exchange in CsPbBr <sub>3</sub> perovskite nanocrystals with hydrohalic acids. CrystEngComm, 2020, 22, 5022-5030.                                                                                                         | 2.6  | 39        |
| 16 | Role of shell composition and morphology in achieving single-emitter photostability for<br>green-emitting "giant―quantum dots. Journal of Chemical Physics, 2020, 152, 124713.                                                                               | 3.0  | 20        |
| 17 | Recent Progress on Metal Chalcogenide Semiconductor Tetrapod-Shaped Colloidal Nanocrystals and their Applications in Optoelectronics. Chemistry of Materials, 2019, 31, 9216-9242.                                                                           | 6.7  | 51        |
| 18 | Broadband Defects Emission and Enhanced Ligand Raman Scattering in OD<br>Cs <sub>3</sub> Bi <sub>2</sub> I <sub>9</sub> Colloidal Nanocrystals. Advanced Functional Materials,<br>2019, 29, 1805299.                                                         | 14.9 | 44        |

Nimai Mishra

| #  | Article                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The Phosphine Oxide Route toward Lead Halide Perovskite Nanocrystals. Journal of the American<br>Chemical Society, 2018, 140, 14878-14886.                                              | 13.7 | 136       |
| 20 | Using shape to turn off blinking for two-colour multiexciton emission in CdSe/CdS tetrapods. Nature<br>Communications, 2017, 8, 15083.                                                  | 12.8 | 37        |
| 21 | Facet to Facet Linking of Shape Anisotropic Inorganic Nanocrystals with Site Specific and Stoichiometric Control. Nano Letters, 2016, 16, 6431-6436.                                    | 9.1  | 12        |
| 22 | Continuous Shape Tuning of Nanotetrapods: Toward Shape-Mediated Self-Assembly. Chemistry of<br>Materials, 2016, 28, 1187-1195.                                                          | 6.7  | 36        |
| 23 | Highâ€Performance Hybrid Solar Cell Made from CdSe/CdTe Nanocrystals Supported on Reduced<br>Graphene Oxide and PCDTBT. Advanced Functional Materials, 2014, 24, 1904-1910.             | 14.9 | 56        |
| 24 | Dual Wavelength Electroluminescence from CdSe/CdS Tetrapods. ACS Nano, 2014, 8, 2873-2879.                                                                                              | 14.6 | 56        |
| 25 | Multifunctional Semiconductor Nanoheterostructures via Siteâ€Selective Silica Encapsulation. Small, 2013, 9, 1908-1915.                                                                 | 10.0 | 18        |
| 26 | Unusual Selectivity of Metal Deposition on Tapered Semiconductor Nanostructures. Chemistry of<br>Materials, 2012, 24, 2040-2046.                                                        | 6.7  | 52        |
| 27 | Low Threshold, Amplified Spontaneous Emission from Coreâ€ <del>S</del> eeded Semiconductor Nanotetrapods<br>Incorporated into a Sol–Gel Matrix. Advanced Materials, 2012, 24, OP159-64. | 21.0 | 37        |
| 28 | Asymmetric Dumbbells from Selective Deposition of Metals on Seeded Semiconductor Nanorods.<br>Angewandte Chemie - International Edition, 2010, 49, 2888-2892.                           | 13.8 | 88        |
| 29 | Enhanced tunability of the multiphoton absorption cross-section in seeded CdSe/CdS nanorod heterostructures. Applied Physics Letters, 2010, 97, .                                       | 3.3  | 35        |