Rohini Chopra-Dewasthaly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5634664/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	First steps towards the genetic manipulation of Mycoplasma agalactiae and Mycoplasma bovis using the transposon Tn4001mod. International Journal of Medical Microbiology, 2005, 294, 447-453.	3.6	49
2	In vitro and in vivo cell invasion and systemic spreading of Mycoplasma agalactiae in the sheep infection model. International Journal of Medical Microbiology, 2014, 304, 1024-1031.	3.6	48
3	Phaseâ€locked mutants of <i>Mycoplasma agalactiae</i> : defining the molecular switch of highâ€frequency Vpma antigenic variation. Molecular Microbiology, 2008, 67, 1196-1210.	2.5	43
4	Construction of the first shuttle vectors for gene cloning and homologous recombination in Mycoplasma agalactiae. FEMS Microbiology Letters, 2005, 253, 89-94.	1.8	31
5	Vpma phase variation is important for survival and persistence of Mycoplasma agalactiae in the immunocompetent host. PLoS Pathogens, 2017, 13, e1006656.	4.7	26
6	Role of Vpma phase variation in <i>Mycoplasma agalactiae</i> pathogenesis. FEMS Immunology and Medical Microbiology, 2012, 66, 307-322.	2.7	25
7	Genetic loci of Mycoplasma agalactiae involved in systemic spreading during experimental intramammary infection of sheep. Veterinary Research, 2016, 47, 106.	3.0	16
8	Novel role of Vpmas as major adhesins of Mycoplasma agalactiae mediating differential cell adhesion and invasion of Vpma expression variants. International Journal of Medical Microbiology, 2018, 308, 263-270.	3.6	16
9	Comprehensive RNA-Seq Profiling to Evaluate the Sheep Mammary Gland Transcriptome in Response to Experimental Mycoplasma agalactiae Infection. PLoS ONE, 2017, 12, e0170015.	2.5	16
10	Xer1-Mediated Site-Specific DNA Inversions and Excisions in <i>Mycoplasma agalactiae</i> . Journal of Bacteriology, 2010, 192, 4462-4473.	2.2	15
11	Xer1-independent mechanisms of Vpma phase variation in Mycoplasma agalactiae are triggered by Vpma-specific antibodies. International Journal of Medical Microbiology, 2017, 307, 443-451.	3.6	15
12	Disruption of the pdhB Pyruvate Dehydrogenase Gene Affects Colony Morphology, In Vitro Growth and Cell Invasiveness of Mycoplasma agalactiae. PLoS ONE, 2015, 10, e0119706.	2.5	15
13	Mycoplasma tauri sp. nov. isolated from the bovine genital tract. Systematic and Applied Microbiology, 2022, 45, 126292.	2.8	12
14	Sheep primary cells as <i>in vitro</i> models to investigate <i>Mycoplasma agalactiae</i> host cell interactions. Pathogens and Disease, 2015, 73, ftv048.	2.0	9
15	Simultaneous Identification of Potential Pathogenicity Factors of Mycoplasma agalactiae in the Natural Ovine Host by Negative Selection. Infection and Immunity, 2015, 83, 2751-2761.	2.2	8
16	Novel antigenic proteins of Mycoplasma agalactiae as potential vaccine and serodiagnostic candidates. Veterinary Microbiology, 2020, 251, 108866.	1.9	7
17	Mycoplasma agalactiae Induces Cytopathic Effects in Infected Cells Cultured In Vitro. PLoS ONE, 2016, 11, e0163603.	2.5	7
18	Predominant Single Stable VpmaV Expression in Strain GM139 and Major Differences with Mycoplasma agalactiae Type Strain PG2. Animals, 2022, 12, 265.	2.3	4

#	Article	IF	CITATIONS
19	Host cell interactions of novel antigenic membrane proteins of Mycoplasma agalactiae. BMC Microbiology, 2022, 22, 93.	3.3	3
20	Sheep Infection Trials with †Phase-Locked' Vpma Expression Variants of Mycoplasma agalactiae—Towards Elucidating the Role of a Multigene Family Encoding Variable Surface Lipoproteins in Infection and Disease. Microorganisms, 2022, 10, 815.	3.6	1