
R Leon E Hugo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5634597/publications.pdf Version: 2024-02-01

PLEON F HUCO

#	Article	IF	CITATIONS
1	The distinguishing NS5-M114V mutation in American Zika virus isolates has negligible impacts on virus replication and transmission potential. PLoS Neglected Tropical Diseases, 2022, 16, e0010426.	3.0	4
2	Persistence of antibodies, boostability, and interchangeability of Japanese encephalitis vaccines: A systematic review and dose-response meta-analysis. Vaccine, 2022, 40, 3546-3555.	3.8	5
3	Reporter Flaviviruses as Tools to Demonstrate Homologous and Heterologous Superinfection Exclusion. Viruses, 2022, 14, 1501.	3.3	7
4	The presence of knockdown resistance mutations reduces male mating competitiveness in the major arbovirus vector, Aedes aegypti. PLoS Neglected Tropical Diseases, 2021, 15, e0009121.	3.0	12
5	The structure of an infectious immature flavivirus redefines viral architecture and maturation. Science Advances, 2021, 7, .	10.3	33
6	Releasing incompatible males drives strong suppression across populations of wild and <i>Wolbachia</i> -carrying <i>Aedes aegypti</i> in Australia. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	71
7	Mosquito Age Grading and Vector-Control Programmes. Trends in Parasitology, 2020, 36, 39-51.	3.3	27
8	Identifying the fitness costs of a pyrethroid-resistant genotype in the major arboviral vector Aedes aegypti. Parasites and Vectors, 2020, 13, 358.	2.5	20
9	Zika Virus sfRNA Plays an Essential Role in the Infection of Insects and Mammals. Proceedings (mdpi), 2020, 50, .	0.2	0
10	A micro-PRNT for the detection of Ross River virus antibodies in mosquito blood meals: A useful tool for inferring transmission pathways. PLoS ONE, 2020, 15, e0229314.	2.5	4
11	Effect of Serotype and Strain Diversity on Dengue Virus Replication in Australian Mosquito Vectors. Pathogens, 2020, 9, 668.	2.8	8
12	Zika virus noncoding RNA suppresses apoptosis and is required for virus transmission by mosquitoes. Nature Communications, 2020, 11, 2205.	12.8	50
13	Australian Aedes aegypti mosquitoes are susceptible to infection with a highly divergent and sylvatic strain of dengue virus type 2 but are unlikely to transmit it. Parasites and Vectors, 2020, 13, 240.	2.5	2
14	Title is missing!. , 2020, 15, e0229314.		0
15	Title is missing!. , 2020, 15, e0229314.		0
16	Title is missing!. , 2020, 15, e0229314.		0
17	Title is missing!. , 2020, 15, e0229314.		0
18	Treatment of pigs with endectocides as a complementary tool for combating malaria transmission by Anopheles farauti (s.s.) in Papua New Guinea. Parasites and Vectors, 2019, 12, 124.	2.5	20

R LEON E HUGO

#	Article	IF	CITATIONS
19	Identification of the source of blood meals in mosquitoes collected from north-eastern Australia. Parasites and Vectors, 2019, 12, 198.	2.5	11
20	Vector competence of Australian Aedes aegypti and Aedes albopictus for an epidemic strain of Zika virus. PLoS Neglected Tropical Diseases, 2019, 13, e0007281.	3.0	38
21	<i>Wolbachia</i> â€induced transcription factor <i>GATA4</i> suppresses ovaryâ€specific genes <i>blastodermâ€specific protein 25D</i> and <i>imaginal disc growth factor</i> . Insect Molecular Biology, 2018, 27, 295-304.	2.0	3
22	Proteomics of Anopheles Vectors of Malaria. Trends in Parasitology, 2018, 34, 961-981.	3.3	15
23	Suppression of the pelo protein by Wolbachia and its effect on dengue virus in Aedes aegypti. PLoS Neglected Tropical Diseases, 2018, 12, e0006405.	3.0	26
24	First report on the application of near-infrared spectroscopy to predict the age of Aedes albopictus Skuse. Scientific Reports, 2018, 8, 9590.	3.3	25
25	<i>De Novo</i> Generation and Characterization of New Zika Virus Isolate Using Sequence Data from a Microcephaly Case. MSphere, 2017, 2, .	2.9	47
26	Rapid and Non-destructive Detection and Identification of Two Strains of Wolbachia in Aedes aegypti by Near-Infrared Spectroscopy. PLoS Neglected Tropical Diseases, 2016, 10, e0004759.	3.0	57
27	Near-Infrared Spectroscopy, a Rapid Method for Predicting the Age of Male and Female Wild-Type and Wolbachia Infected Aedes aegypti. PLoS Neglected Tropical Diseases, 2016, 10, e0005040.	3.0	36
28	Effects of Larval Nutrition on <i>Wolbachia</i> -Based Dengue Virus Interference in <i>Aedes aegypti</i> (Diptera: Culicidae). Journal of Medical Entomology, 2016, 53, 894-901.	1.8	12
29	Chikungunya virus transmission between Aedes albopictus and laboratory mice. Parasites and Vectors, 2016, 9, 555.	2.5	16
30	Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development. PLoS Neglected Tropical Diseases, 2016, 10, e0004873.	3.0	84
31	Safety and Reproducibility of a Clinical Trial System Using Induced Blood Stage Plasmodium vivax Infection and Its Potential as a Model to Evaluate Malaria Transmission. PLoS Neglected Tropical Diseases, 2016, 10, e0005139.	3.0	39
32	Proteomic changes occurring in the malaria mosquitoes Anopheles gambiae and Anopheles stephensi during aging. Journal of Proteomics, 2015, 126, 234-244.	2.4	29
33	Mass spectrometry identification of age-associated proteins from the malaria mosquitoes Anopheles gambiae s.s. and Anopheles stephensi. Data in Brief, 2015, 4, 461-467.	1.0	12
34	Adult Survivorship of the Dengue Mosquito Aedes aegypti Varies Seasonally in Central Vietnam. PLoS Neglected Tropical Diseases, 2014, 8, e2669.	3.0	43
35	Using a Near-Infrared Spectrometer to Estimate the Age of Anopheles Mosquitoes Exposed to Pyrethroids. PLoS ONE, 2014, 9, e90657.	2.5	39
36	Proteomic Biomarkers for Ageing the Mosquito Aedes aegypti to Determine Risk of Pathogen Transmission. PLoS ONE, 2013, 8, e58656.	2.5	28

R LEON E HUGO

#	Article	IF	CITATIONS
37	Evaluating RNAlater® as a preservative for using near-infrared spectroscopy to predict Anopheles gambiae age and species. Malaria Journal, 2011, 10, 186.	2.3	34
38	Investigation of Environmental Influences on a Transcriptional Assay for the Prediction of Age of Aedes aegypti (Diptera: Culicidae) Mosquitoes. Journal of Medical Entomology, 2010, 47, 1044-1052.	1.8	11
39	Near-infrared spectroscopy as a complementary age grading and species identification tool for African malaria vectors. Parasites and Vectors, 2010, 3, 49.	2.5	93
40	Field Validation of a Transcriptional Assay for the Prediction of Age of Uncaged Aedes aegypti Mosquitoes in Northern Australia. PLoS Neglected Tropical Diseases, 2010, 4, e608.	3.0	26
41	A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium. Cell, 2009, 139, 1268-1278.	28.9	1,384
42	Evaluations of Mosquito Age Grading Techniques Based on Morphological Changes. Journal of Medical Entomology, 2008, 45, 353-369.	1.8	39
43	Predicting the age of mosquitoes using transcriptional profiles. Nature Protocols, 2007, 2, 2796-2806.	12.0	38
44	The use of transcriptional profiles to predict adult mosquito age under field conditions. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18060-18065.	7.1	99
45	INVESTIGATION OF CUTICULAR HYDROCARBONS FOR DETERMINING THE AGE AND SURVIVORSHIP OF AUSTRALASIAN MOSQUITOES. American Journal of Tropical Medicine and Hygiene, 2006, 74, 462-474.	1.4	41
46	Investigation of cuticular hydrocarbons for determining the age and survivorship of australasian mosquitoes. American Journal of Tropical Medicine and Hygiene, 2006, 74, 462-74.	1.4	22
47	Gut Content Analysis to Distinguish Between Seed Feeding and Mycophagy of a Biphyllid Beetle Larva Found on Acacia melanoxylon. Biocontrol Science and Technology, 2003, 13, 355-360.	1.3	6
48	Autogeny in <i>Ochlerotatus vigilax</i> (Diptera: Culicidae) from Southeast Queensland, Australia. Journal of Medical Entomology, 2003, 40, 897-902.	1.8	18