List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5634533/publications.pdf Version: 2024-02-01

ATSUSHI MINESHICE

#	Article	IF	CITATIONS
1	Electrochemical, Thermal, and Structural Features of BaF ₂ –SnF ₂ Fluoride-Ion Electrolytes. Journal of Physical Chemistry C, 2021, 125, 12568-12577.	1.5	8
2	Charge-discharge behavior of fluorine-intercalated graphite for the positive electrode of fluoride ion shuttle battery. Electrochemistry Communications, 2020, 110, 106626.	2.3	16
3	Lanthanum silicate-based layered electrolyte for intermediate-temperature fuel cell application. Journal of Power Sources, 2020, 475, 228543.	4.0	8
4	Experimental Visualization of Interstitialcy Diffusion Pathways in Fast-Fluoride-Ion-Conducting Solid Electrolyte Ba _{0.6} La _{0.4} F _{2.4} . ACS Applied Energy Materials, 2020, 3, 2873-2880.	2.5	22
5	Electrical Properties of Oxyapatite-Type Solid Electrolyte and Its Application to Solid Oxide Fuel Cell. ECS Transactions, 2019, 91, 1129-1138.	0.3	3
6	Preparation of lanthanum silicate electrolyte with high conductivity and high chemical stability. Solid State Ionics, 2018, 319, 223-227.	1.3	7
7	Preparation of In 2 O 3 crystals in phase separated structure of sodium borosilicate glass and its electrical conductivity. Materials Research Bulletin, 2017, 90, 87-93.	2.7	2
8	Flame Synthesis of Substoichiometric Titanium Oxide under Reduction Atmosphere. Journal of the Society of Powder Technology, Japan, 2015, 52, 500-507.	0.0	0
9	High-pressure (GPa) impedance measurements based on an indentation-induced local stress field. Solid State Ionics, 2014, 254, 6-10.	1.3	3
10	Influence of nano-sized LSCF cathode and its firing temperature on electrochemical performance in oxygen-excess-type solid electrolyte (OESE)-based fuel cells. Journal of Power Sources, 2014, 272, 422-426.	4.0	9
11	Oxide ion and electron transport properties in lanthanum silicate oxyapatite ceramics. Solid State Ionics, 2014, 262, 555-558.	1.3	12
12	Fabrication of apatite-type lanthanum silicate films and anode supported solid oxide fuel cells using nano-sized printable paste. Journal of the European Ceramic Society, 2014, 34, 373-379.	2.8	13
13	Proton Incorporation, Mixed Alkaline Effect and H+/e^ ^minus; Mixed Conduction of Phosphosilicate Glasses and Glass-ceramics. Electrochemistry, 2014, 82, 901-905.	0.6	7
14	Relationship between Local Structure and Oxide Ionic Diffusion of Nd2NiO4+^ ^delta; with K2NiF4 Structure. Electrochemistry, 2014, 82, 875-879.	0.6	4
15	Direct Observation of Rate Determining Step for Nd2NiO4+^ ^delta; SOFC Cathode Reaction by operando Electrochemical XAS. Electrochemistry, 2014, 82, 897-900.	0.6	12
16	A carbonaceous thin film containing N-coordinated Fe and Co with catalytic activity for oxygen reduction. Tanso, 2014, 2014, 165-168.	0.1	2
17	Effect of plastics substrate on phase separation behavior and adhesion for RSi(OC2H5)3–Si(OC2H5)4 coatings prepared by sol–gel process. Ceramics International, 2013, 39, 925-930.	2.3	4
18	Charge compensation mechanisms in Li1.16Ni0.15Co0.19Mn0.50O2 positive electrode material for Li-ion batteries analyzed by a combination of hard and soft X-ray absorption near edge structure. Journal of Power Sources, 2013, 222, 45-51.	4.0	130

#	Article	IF	CITATIONS
19	Hydrogen Evolution by Carbonaceous Nanoparticle Aggregates that were derived from Cobalt Phthalocyanine. ChemCatChem, 2013, 5, 130-133.	1.8	12
20	Carbonaceous thin film coated on nanoparticle as fuel cell catalyst formed by one-pot hybrid physical–chemical vapor deposition of iron phthalocyanine. Electrochimica Acta, 2013, 90, 366-374.	2.6	10
21	The state of P Onb non-bridging oxygen and proton incorporation in binary MO·P2O5 (M = Ca, Mg) phosphate glasses. Solid State Ionics, 2013, 245-246, 19-23.	1.3	11
22	Microanalysis of a Grain Boundary's Blocking Effect in Lanthanum Silicate Electrolyte for Intermediate-Temperature Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2013, 5, 5307-5313.	4.0	9
23	Proton infiltration of phosphosilicate glass-electrolytes for intermediate temperature fuel cell. Materials Research Society Symposia Proceedings, 2013, 1495, 1.	0.1	2
24	Characterization of carbon dioxide separation membrane with polycation nano-layers. Materials Research Society Symposia Proceedings, 2013, 1492, 137-142.	0.1	0
25	Electrochemical behavior of mixed conducting oxide cathode on oxygen excess-type solid electrolyte. Journal of Power Sources, 2012, 217, 170-174.	4.0	11
26	Solvent effect on distribution of phenyl groups for C6H5SiO3/2–SiO2 coatings prepared on polycarbonate substrate. Journal of Sol-Gel Science and Technology, 2012, 62, 92-97.	1.1	3
27	An X-ray absorption spectroscopic study on mixed conductive La0.6Sr0.4Co0.8Fe0.2O3â^î^ cathodes. I. Electrical conductivity and electronic structure. Physical Chemistry Chemical Physics, 2011, 13, 16637.	1.3	34
28	Local structural analysis for oxide ion transport in La0.6Sr0.4FeO3â~'δ cathodes. Journal of Materials Chemistry, 2011, 21, 14013.	6.7	15
29	X-ray Absorption Spectroscopic Study on La _{0.6} Sr _{0.4} CoO _{3â^îr} Cathode Materials Related with Oxygen Vacancy Formation. Journal of Physical Chemistry C, 2011, 115, 16433-16438.	1.5	56
30	Surface-modified Tubular Glass Electrolyte for Portable Direct Methanol Fuel Cell. Chemistry Letters, 2011, 40, 603-605.	0.7	1
31	One-pot hybrid physical–chemical vapor deposition for formation of carbonaceous thin film with catalytic activity for oxygen reduction. Electrochemistry Communications, 2011, 13, 1451-1454.	2.3	13
32	Phase-separation and distribution of phenyl groups for PhTES-TEOS coatings prepared on polycarbonate substrate. Journal of Sol-Gel Science and Technology, 2011, 58, 80-84.	1.1	10
33	Effect of cation doping on ionic and electronic properties for lanthanum silicate-based solid electrolytes. Solid State Ionics, 2011, 192, 195-199.	1.3	22
34	Preparation and Fuel Cell Property of a Phosphosilicate Glass with Proton Transport Number tH = 1 at 400–500°C. Electrochemical and Solid-State Letters, 2011, 14, B63.	2.2	6
35	Effect of Substrate Materials on Physical Properties of Nd-Substituted Bi4Ti3O12 Thin Films with a- and b-Axis Orientations Deposited on IrO2/Al2O3 and Nb:TiO2 Substrates ?. Journal of the Korean Physical Society, 2011, 59, 2519-2523.	0.3	0
36	Structural Characteristics of Epitaxially a- and b-axis-oriented (Bi3.25Nd0.75)Ti3O12 Films Fabricated on Conductive Nb:TiO2 Substrates by High-temperature Sputtering. Journal of the Korean Physical Society, 2011, 59, 2528-2531.	0.3	0

#	Article	IF	CITATIONS
37	Spinodal-type phase separation and proton conductivity of Al2O3-doped porous glasses. Journal of the Ceramic Society of Japan, 2010, 118, 1131-1134.	0.5	4
38	Effect of transition metal additives on electrical conductivity for La-excess-type lanthanum silicate. Solid State Ionics, 2010, 181, 1697-1701.	1.3	9
39	Preparation of carbon-based transparent and conductive thin films by pyrolysis of silylated graphite oxides. Carbon, 2010, 48, 4009-4014.	5.4	15
40	Firstâ€Principles Calculation and Proton Transfer in TiO ₂ â€Modified Porous Glass. Journal of the American Ceramic Society, 2010, 93, 127-131.	1.9	8
41	Structures and Photocatalytic Properties of Crystalline Titanium Oxideâ€Dispersed Nanoporous Glass–Ceramics. Journal of the American Ceramic Society, 2010, 93, 461-464.	1.9	15
42	Effects of Hot Isostatic-Pressing Treatment on Properties of PbMg _{0.047} Nb _{0.095} Zr _{0.416} Ti _{0.442} O ₃ Thin Films. Ferroelectrics, 2010, 409, 139-144.	0.3	0
43	Crystal Growth and Structural Characteristics of Preferentially <i>a-</i> and <i>b-</i> Axis <i>-</i> Oriented (Bi _{4-<i>x</i>} Nd <i>_x</i>)Ti ₃ O ₁₂ Films Fabricated by High <i>-</i> Temperature Sputtering, Ferroelectrics, 2010, 406, 155-160,	0.3	0
44	Ionic and Electronic Conductivities and Fuel Cell Performance of Oxygen Excess-Type Lanthanum Silicates. Journal of the Electrochemical Society, 2010, 157, B1465.	1.3	23
45	Characterization of (Bi _{3.25} Nd _{0.75})Ti ₃ O ₁₂ Thin Films with a- and b-Axis Orientations Deposited on Nb:TiO ₂ Substrates by High-Temperature Sputtering. Japanese Journal of Applied Physics, 2010, 49, 09MA03.	0.8	16
46	Fabrication of anode supported SOFC using plasma-sprayed films of the apatite-type lanthanum silicate as an electrolyte. Solid State Ionics, 2010, 181, 1707-1712.	1.3	22
47	Fabrication and Characterization of Nd-Substituted Bi4Ti3O12Thin Films witha- andb-Axis Orientations by High-Temperature Sputtering. Japanese Journal of Applied Physics, 2009, 48, 09KA09.	0.8	9
48	Novel porous TiO2 glass-ceramics with highly photocatalytic ability. Ceramics International, 2009, 35, 1693-1697.	2.3	38
49	In Situ Oxidation of Alkanethiol Groups and Proton Transfer in Nanopores of Sodium Borosilicate Glasses. Journal of Physical Chemistry C, 2009, 113, 1891-1895.	1.5	10
50	Solid Oxide Fuel Cell Employing a New Class of Solid Electrolytes, La9.33+x(Si6-yAly)O26+1.5x-0.5y. Electrochemistry, 2009, 77, 146-148.	0.6	11
51	Chemical stability of La10Si6O27 and its application to electrolytes for solid oxide fuel cells. Solid State Ionics, 2008, 179, 1567-1569.	1.3	33
52	Electrical properties of La10Si6O27-based oxides. Solid State Ionics, 2008, 179, 1009-1012.	1.3	45
53	Electrical and Interfacial Properties for a New Class of Oxide Ionic Conductors, La _{9.33+x} Si ₆ O _{26+1.5x} . ECS Transactions, 2008, 13, 31-38.	0.3	12
54	lonic and Electronic Conductivities for Ln _{9.33+x} Si ₆ O _{26+1.5x} under Various Conditions. ECS Transactions, 2008, 13, 39-45.	0.3	5

ATSUSHI MINESHIGE

#	Article	IF	CITATIONS
55	Fabrication of High-Density (Bi,La)(Zn,Mg,Ti)O ₃ –PbTiO ₃ Solid Solutions with Ferroelectric and Piezoelectric Functionalities by Microstructural Control. Japanese Journal of Applied Physics, 2008, 47, 7664.	0.8	7
56	Growth of Perovskite (Bi,Ln)(Ni0.5Ti0.5)O3Thin Films by RF Magnetron Sputtering. Japanese Journal of Applied Physics, 2007, 46, 6938-6943.	0.8	5
57	In situ Raman Spectroscopy of Pt/C Electrodes in H2SO4 Aqueous Solution. Electrochemistry, 2007, 75, 179-181.	0.6	3
58	Ferroelectric Properties and Memory Characteristics of Epitaxial Pb(Zr _{0.3} Ti _{0.7})O ₃ Thin Films with Different Thicknesses Crystallized by Hot Isostatic Pressing. Ferroelectrics, 2007, 357, 264-270.	0.3	1
59	Monitoring of water dissolution into high temperature protonic conductors. Solid State Ionics, 2007, 178, 713-715.	1.3	2
60	Cermet-type hydrogen separation membrane obtained from fine particles of high temperature proton-conductive oxide and palladium. Thin Solid Films, 2007, 515, 7342-7346.	0.8	13
61	Preparation of CO2-selective separation membranes with highly chemical and thermal stability prepared from inorganic-organic nanohybrids containing branched polyethers. Journal of Materials Science, 2007, 42, 723-727.	1.7	6
62	Refined Position of the Morphotropic Phase Boundary and Compositional Search of Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 Ceramics for Piezoelectric Applications. Journal of the Ceramic Society of Japan, 2006, 114, 241-246.	1.3	6
63	é›»ä¼2ඞ̃,¹ãƒ†ãƒƒãƒ—åů°"率æ,¬å®šã«ã,^ã,‹ç™¼2金è;¨é¢åů¿œéŽç¨‹ã®è¿¼2è·¡. Electrochemistry, 2006, 74, 397-40)10.6	0
64	Yttria-stabilized zirconia thin films deposited on NiO–(Sm2O3)0.1(CeO2)0.8 substrates by chemical vapor infiltration. Journal of Power Sources, 2006, 162, 1053-1059.	4.0	0
65	Raman study on defect structure of high-temperature protonic conducting ceramics. Solid State Ionics, 2006, 177, 2443-2445.	1.3	10
66	Growth mechanism of thin films of yttria-stabilized zirconia by chemical vapor infiltration using NiO–ceria substrate as oxygen source. Journal of Power Sources, 2006, 162, 1060-1066.	4.0	2
67	Vapor-Phase Deposition for Dense CeO[sub 2] Film Growth on Porous Substrates. Journal of the Electrochemical Society, 2006, 153, A975.	1.3	6
68	Porous Metal Tubular Support for Solid Oxide Fuel Cell Design. Electrochemical and Solid-State Letters, 2006, 9, A427.	2.2	12
69	Effects of mixed conduction on the open-circuit voltage of intermediate-temperature SOFCs based on Sm-doped ceria electrolytes. Solid State Ionics, 2005, 176, 663-668.	1.3	120
70	Electrochemical properties of ceria-based oxides for use in intermediate-temperature SOFCs. Solid State Ionics, 2005, 176, 647-654.	1.3	106
71	Introduction of A-site deficiency into La0.6Sr0.4Co0.2Fe0.8O3–δ and its effect on structure and conductivity. Solid State Ionics, 2005, 176, 1145-1149.	1.3	150
72	In Situ, Time-Resolved Normal Incidence Reflectance Spectroscopy of Polycrystalline Platinum Microelectrodes in Aqueous Electrolytes. Journal of Physical Chemistry B, 2005, 109, 36-39.	1.2	21

#	Article	IF	CITATIONS
73	Preparation of dense electrolyte layer using dissociated oxygen electrochemical vapor deposition technique. Solid State Ionics, 2004, 175, 483-485.	1.3	25
74	Fabrication of YSZ Thin Films by Chemical Vapor Infiltration Using NiO as Oxygen Source. Journal of the Electrochemical Society, 2003, 150, C688.	1.3	4
75	Oxygen chemical potential and mixed conduction in doped ceria under influence of oxygen partial pressure gradient. Solid State Ionics, 2002, 152-153, 493-498.	1.3	21
76	Crystallization of Amorphous (Pb, La)(Zr, Ti)O3 Thin Film and Its Electrical Properties Journal of the Ceramic Society of Japan, 2001, 109, 631-636.	1.3	4
77	Effects of MnO2 Addition on Piezoelectric and Ferroelectric Properties of PbNi1/3Nb2/303-PbTiO3-PbZrO3 Ceramics Journal of the Ceramic Society of Japan, 2000, 108, 633-637.	1.3	15
78	Electrical Property, Crystal Structure and Oxygen Nonstoichiometry of La ₁₋ <i>_x</i> Sr <i>_xElectrochemistry, 2000, 68, 515-518.</i>	t;@o <su< td=""><td>ıb&ıgt;0.2</</td></su<>	ıb& ıg t;0.2</
79	Effects of Pt/SrRuO3Top Electrodes on Ferroelectric Properties of Epitaxial (Pb, La)(Zr, Ti)O3Thin Films. Japanese Journal of Applied Physics, 2000, 39, 5451-5455.	0.8	22
80	Metal–Insulator Transition and Crystal Structure of La1â^'xSrxCoO3as Functions of Sr-Content, Temperature, and Oxygen Partial Pressure. Journal of Solid State Chemistry, 1999, 142, 374-381.	1.4	141
81	EFFECTS OF YTTRIUM AND SODIUM ADDITION ON PREPARATION AND HUMIDITY SENSITIVITY OF POROUS APATITE CERAMICS. Zairyo/Journal of the Society of Materials Science, Japan, 1999, 48, 116-121.	0.1	0
82	Preparation of ceria thin films and microtubes by vapor-phase deposition using NiO as oxygen source. Thin Solid Films, 1998, 323, 18-22.	0.8	9
83	Relationship between Pyroelectric Properties and Electrode Sizes in (Pb, La)(Zr, Ti)O3(PLZT) Thin Films. Japanese Journal of Applied Physics, 1998, 37, 5154-5157.	0.8	20
84	Preparation and Their Properties of Pb(Sc _{1/2} Ta _{1/2})O ₃ Pb(Sc _{1/2} Nb _{1/2})O _{3<td>sub.8</td><td>1</td>}	sub.8	1
85	Preparation of Translucent Hydroxyapatite Ceramics by HIP and Their Physical Properties. Journal of the Ceramic Society of Japan, 1997, 105, 210-213.	1.3	13
86	Preparation and Pyroelectric Properties of (Pb, La) (Zr, Ti)O ₃ Ceramics. Journal of the Ceramic Society of Japan, 1997, 105, 312-316.	1.3	2
87	Growth rate of yttria-stabilized zirconia thin films formed by electrochemical vapour-deposition using NiO as an oxygen source. Solid State Ionics, 1997, 104, 303-310.	1.3	36
88	Crystal Structure and Metal–Insulator Transition of La1â^'xSrxCoO3. Journal of Solid State Chemistry, 1996, 121, 423-429.	1.4	224
89	Preparation of Yttria-Stabilized Zirconia Microtube by Electrochemical Vapor Deposition. Journal of the American Ceramic Society, 1995, 78, 3157-3159.	1.9	21
90	Structural Characteristics and Ferroelectric Properties of Bismuth-Based Compound Thin Films Crystallized by Hot Isostatic Pressing. Key Engineering Materials, 0, 421-422, 143-147.	0.4	0

#	Article	IF	CITATIONS
91	Growth and Electrical Properties of PbMg _{0.047} Nb _{0.095} Zr _{0.416} Ti _{(Films Fabricated by Metalorganic Decomposition. Key Engineering Materials, 0, 421-422, 148-152.}). 4 A2<	;/su b >O<